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SUMMARY 
Nonlinear micromechanics of failure (MMF), which combines independent constituent 
failure criteria and progressive damage model, was developed to predict the constitutive 
behavior and strength of composite laminates under multi-axial loadings. Good 
agreement between theoretical prediction and test data was achieved. 
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INTRODUCTION 
During the past half century, a great deal of research has been dedicated to 

investigating failure mechanism of composite materials. New failure theories have kept 
emerging in this field, some of which have been widely accepted and employed in 
industries to guide the design of composite structures. Today a rapid growth of 
composite applications in various industries requires new failure prediction of 
composite materials with the capability of dealing with multi-axial combined loadings, 
catching the nonlinear constitutive behavior, predicting initial and final failure of a 
laminate, and etc. Recently, a new failure theory called micromechanics of failure 
(MMF), based on unit cell model which describes microstructure of composite and 
independent failure criterion for each constituent, was proposed in order to meet the 
new challenges mentioned above [1]. The three-dimensional unit cell model guarantees 
MMF is naturally capable of dealing with problems involving fully three-dimensional 
multi-axial loadings; while the constituent failure criteria make it possible to distinguish 
the critical constituent/constituents in the critical ply/plies. However, the constitutive 
behavior of both fiber and matrix was assumed to be linear elastic at the first stage, 
which made it impossible to predict the considerably nonlinear behavior of a 
unidirectional laminate subject to transverse tension/compression or in-plane shear, as 
revealed by a large number of experiments. Therefore, the MMF theory was 
incorporated with a progressive damage model for the polymeric matrix, which is the 
major contributor of nonlinearity. 

 

MICROMECHANICS OF FAILURE AND PROGRESSIVE DAMAGE MODEL 

 



Micro Stress and Macro Stress 
In order to express micro structure of one lamina in terms of fiber, matrix, and 

interface, a unit cell model was devised (Fig. 1). With this model, constituent behavior 
is directly related to ply behavior. Usually, carbon fiber is taken as transversely 
isotropic, while glass fiber as isotropic. We accepted this assumption, and further 
assumed both carbon and glass fibers to be linear elastic and brittle. On the other hand, 
the polymeric matrix was assumed to be isotropic and ductile, featuring nonlinear 
behavior once it is damaged. The fiber-matrix interface was modeled to exhibit linear 
traction-separation behavior.  
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Fig. 1. Unit cell model (hexagonal fiber array). 

 

Though the UD ply is generally considered to be transversely isotropic, the 
strain/stress distribution within fiber and matrix, as well as the interfacial traction 
distribution along the fiber-matrix interface, must be non-uniform even under uniform 
external loading conditions due to the inhomogeneity at micro level. The distribution of 
micro stresses was related to macro stresses and temperature increment as [2]: 
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where σ , fσ , mσ , and it  represent macro stresses, micro stresses in fiber, micro 
stresses in matrix, and interfacial tractions, respectively. Stress amplification factors for 
macro stress M and for temperature increment A were determined through direct finite 
element analysis of a unit cell with proper boundary conditions. 

 

Constituent Failure Criteria and Progressive Damage Model 
A complete set of constituent failure criteria were proposed [3]. A maximum 

longitudinal stress failure criterion was used for the fiber: 

 11f f fC Tσ− < <  (2) 



where 11fσ  denote the micro fiber longitudinal stress, while Tf and Cf denote fiber 
longitudinal tensile and compressive strength, respectively. Matrix materials are, in 
most cases, isotropic, but have different tensile and compressive strengths. Numerous 
experiments have shown that crazing or failure in matrix is more sensitive to tensile 
stresses than compressive stresses. Such different tensile and compressive strengths 
indicate that matrix failure depends not only on the deviatoric stress invariant, i.e. von 
Mises equivalent stress VMσ , but also on the volumetric stress invariant, i.e. the first 
stress invariant I1. Raghava et al. suggested a modified version of the von Mises failure 
criterion [4] in terms of initial tensile strength Tmi and compressive strength Cmi : 
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This failure criterion is equivalent to the condition that an equivalent stress eqσ  
reaches the initial tensile strength Tmi : 
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where β is defined as the ratio of matrix initial compressive to initial tensile strengths. 
The equivalent stress eqσ  is often called the Stassi’s stress. We adopted Eq. (3) as the 
initial failure criterion for the matrix. 

Once failure occurs, damage starts to develop and the stiffness of matrix reduces 
according to the amount of damage accumulated inside the matrix. We took the damage 
initiation and propagation as isotropic, and the constitutive relation of the matrix was 
given as: 

 ( )1m m m mD= −σ C ε  (5) 

where the damage factor Dm must be in the range between 0 and 1. After initiation of 
failure, the relation between the equivalent stress eqσ  and damage factor Dm was 
described by the following equation: 

 ( )1 exp 1m mD kγ= − −⎡ ⎤⎣ ⎦  (6) 

where km is the matrix failure index, defined as the ratio of eqσ  to Tmi , γ being a 
parameter used to calibrate the uniaxial stress-strain curves based on test data. 
Furthermore, the constitutive relation was complemented by a damage loading function: 

 ( ),eq eq mf σ κ σ κ= −  (7) 

where κm is a scalar-valued history variable starting at a threshold level Tmi at which 
damage is initiated and is updated as required by the Kuhn-Tucker loading-unload 
condition: 

 0,  0,  0m mf fκ κ≤ ≥ =& &  (8) 

The final fracture usually occurs before the damage factor Dm attains to the unity. 
This value can be determined from the uniaxial tensile stress-strain curve. A value of 



0.4 was used as a practical value for the rupture criterion of a damaged material [5]. As 
for the interface, although we proposed a quadratic failure criterion for it, in this article 
we simply assumed the bonding between fiber and matrix is strong enough not to 
produce any separation at the interface. This is often true if proper surface treatment for 
fiber is executed in order to enhance interfacial strength, just as many manufacturers do.  

The overall scenario which combines MMF and progressive damage model is shown 
in Fig. 2. At the beginning of one global time increment i, first calculate the total macro 
strain ( )iε  after current time increment, which is the summation of total macro strain 
before current time increment ( )1i−ε , and the macro strain increment ( )iΔε , then 
calculate the macro stress ( )iσ  based on previous effective ply stiffness ( )1i−C  and ( )iε . 
Next compute micro stress in fiber ( )i

fσ  and in matrix ( )i
mσ  due to macro stress and 

temperature increment. The following procedures involve applying constituent failure 
criteria to fiber and matrix, getting their respective failure indices, employing 
progressive damage model to get degraded fiber and matrix moduli, and calculating 
effective ply stiffness through micromechanical model for next global time increment. 
The calculation was performed with commercial FEA software MD Nastran combined 
with user-defined subroutine UFAIL and UPROGFAIL [6], as well as Abaqus 6.7-1 
combined with user-defined subroutine UMAT [7]. 
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Fig. 2. Overall algorithm combining the MMF and progressive damage model. 

 



Variation of Ply Moduli and Stress Amplification Factors with Constituent Moduli 
As the damage of matrix evolves, the Young’s modulus of matrix decreases 

accordingly, resulting in the reduction of ply moduli. Usually, the Young’s modulus of 
fiber in its longitudinal direction is much higher than that of matrix, therefore based on 
our assumption that fiber is linear elastic and brittle, the damage of matrix has little 
influence on the Young’s modulus of ply in its longitudinal direction. This can be easily 
verified by employing simple rule of mixture for a reasonable fiber volume fraction Vf . 
Nevertheless, other ply moduli show remarkable dependence on both fiber and matrix 
moduli. Fig. 3(a) and (b) show variation of ply transverse modulus and shear moduli 
with respect to their constituent counterparts, respectively. In Fig. 3, matrix Young’s 
modulus Em and shear modulus Gm range from 0 to 10 GPa, while fiber transverse 
Young’s modulus Ef22 , in-plane shear modulus Gf12 , and out-of-plane shear modulus 
Gf23 range from 0 to 100 GPa. We also assumed that Vf =0.6, νm = 0.35, νf12 = νf23 = 0.2. 
The dependency of ply in-plane shear modulus 12G  on Gf12 and Gm is almost identical 
with that of ply out-of-plane shear modulus 23G  on Gf23 and Gm , so they were plotted 
together. Judging by the shape of two surfaces, we concluded that the dependencies 
shown in two subplots are quite similar. 
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Fig. 3. Variation of ply moduli with constituent moduli (Vf = 0.6): (a) ply transverse 
modulus vs. fiber transverse modulus and matrix modulus; (b) ply shear modulus (in-
plane or out-of-plane) vs. fiber shear modulus (in-plane or out-of-plane) and matrix 
shear modulus. 



 

Besides the dependency between moduli shown above, the dependency of stress 
amplification factors M on constituent moduli, especially on Em , also drew our 
attention. Since M varies over the entire cross-section of the unit cell model, plus it is a 
6×6 matrix, it is neither possible nor necessary to investigate all M. Instead, we simply 
selected a number of points of interest where maximum stress concentration might 
occur under various loading conditions. Considering that the maximum longitudinal 
stress failure criterion was employed for fiber, among all 36 entries of an Mf at any 
point in the fiber, only those that contribute to 11fσ  are significant; moreover, since 
fiber is much stiffer and stronger than matrix in its longitudinal direction, those entries 
of Mf are far less sensitive to the degradation of Em . On the other hand, degradation of 
matrix modulus definitely affects Mm , and consequently alters micro stress distribution 
in the matrix.  

Fig. 4 shows variation of Mm versus Em at three points near the fiber-matrix interface for 
IM7/8551-7 (Vf = 0.6), whose constituent (fiber and matrix) properties were listed in 
Table 1 and  

Table 2. The locations of the three points were shown in Fig. 4(g). We obtained these 
data points through direct finite element analysis: keeping fiber properties unchanged, 
and reducing matrix Young’s modulus gradually. Interestingly, by observing the trend 
of variation, we were able to tell that most of entries would have non-zero values when 
Em = 0. 
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Fig. 4. Variation of Mm vs. Em (IM7/8551-7, Vf = 0.6): (a) variation of diagonal entries 
of Mm at point 1; (b) variation of non-zero off-diagonal entries of Mm at point 1; (c) 
variation of diagonal entries of Mm at point 2; (d) variation of non-zero off-diagonal 
entries of Mm at point 2; (e) variation of diagonal entries of Mm at point 3; (f) variation 
of non-zero off-diagonal entries of Mm at point 3; (g) illustration of positions of point 1, 
2, and 3. 

 

FAILURE PREDICTION USING NONLINEAR MMF 
We have run a number of cases to demonstrate the validity of this nonlinear MMF. 

The properties of various fibers and matrices we used for failure prediction were listed 
in  

 

Table 1 and  

Table 2, respectively.  

 

Table 1. Mechanical properties of various fibers [8]. 
Fiber type IM7 E-glass 
Longitudinal modulus Ef1 (GPa) 276 73 
Transverse modulus Ef2 (GPa) 13 73 
In-plane shear modulus Gf12 (GPa) 27 30.4 
Major Poisson's ratio νf12 0.2 0.2 
Major Poisson's ratio νf13 0.2 0.2 
Transverse shear modulus Gf23 (GPa) 7 45 
Longitudinal tensile strength Tf (MPa) 4210 2150 
Longitudinal compressive strength Cf (MPa) 2640 1450 



Longitudinal thermal coefficient αf1 (10-6/°C) -0.4 4.9 
Transverse thermal coefficient αf2 (10-6/°C) 5.6 4.9 
Through-thickness thermal coefficient αf3 (10-6/°C) 5.6 4.9 

 

Table 2. Mechanical properties of various matrices [8]. 
Matrix type 8551-7  MY750  
Elastic Modulus Em (GPa) 4.08 4.6 
Elastic Poisson’s ratio νm 0.38 0.38 
Initial tensile strength Tmi (MPa) 70 60 
Final tensile strength Tmf (MPa) 110 77 
Initial compressive strength Cmi (MPa) 111 111 
Final compressive strength Cmf (MPa) 175 142 
Thermal expansion coefficient αm (10-6/°C) 46.7 58 
Shape parameter γ 1.5 1.5 

 

Failure Prediction for Uniaxial Loading 
Fig. 5 shows the comparison between test results and MMF predictions of transverse 

compressive stress-strain curves for two UDs, E-glass/MY750 and IM7/8551-7, with Vf 
= 0.6. With given constituent properties, the nonlinear MMF not only predicted the 
effective stiffness of the ply, but also accurately caught the initial and final failure of the 
ply. The theoretical predictions and experimental data are well-matched [8]. 
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Fig. 5. Comparison between test results and MMF predictions of UD transverse 
compressive stress-strain curves: (a) E-glass/MY750; (b) IM7/8551-7.  

 

Fig. 6 shows the uniaxial tensile stress-strain curves for IM7/8551-7 and E-
glass/MY750 with two layup sequences: [90/0]2S and [45/0/-45/90]S. The thickness of each 
ply and the fiber volume fraction were respectively set to be 0.125 mm and 0.6 in all cases, 
and a nominal strain of 5% was applied in all cases. Each curve features zigzag shape, 
resulting from constituent failure in plies. Fig. 6(a) is for IM7/8551-7 with stacking 
sequence of [90/0]2S. Point A and B represent matrix final failure in 90° plies and fiber 
tensile failure in 0° plies, respectively. In Fig. 6(b), which is for IM7/8551-7 with layup 
sequence of [45/0/-45/90]S, point C and D indicate matrix final failure in ±45° plies and 
fiber tensile failure in 0° plies, respectively; there is a considerable drop of stress right after 



point D, and as the strain increases, the stress also increases based on a degraded stiffness 
until point E, denoting fiber compressive failure in 90° plies. For E-glass/MY750, however, 
fiber failure and matrix final failure are no longer as close as IM7/8551-7 cases. In Fig. 
6(c), prior to point H, which indicates fiber tensile failure in 0° plies, we can observe 
matrix final failure in 90° plies and 0° plies, marked by point F and point G respectively. In 
Fig. 6(d), the situation is a little bit more complex: matrix final failure in 90° and ±45° 
plies occurs consecutively, indicated by point I and J; point K stands for matrix final 
failure in 0° plies, followed by point L, which means fiber tensile failure in 0° plies. 
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Fig. 6. Uniaxial tensile stress-strain curves of multi-directional laminates: (a) IM7/8551-
7, [90/0]2S; (b) IM7/8551-7, [45/0/-45/90]S; (c) E-glass/MY750, [90/0]2S; (d) E-
glass/MY750, [45/0/-45/90]S.  

 

Fig. 7 shows the uniaxial compressive stress-strain curves for IM7/8551-7 and E-
glass/MY750 with two layup sequences: [90/0]2S and [45/0/-45/90]S. The thickness of each 
ply and the fiber volume fraction were respectively set to be 0.125 mm and 0.6 in all cases, 
and a nominal strain of 5% was applied in all cases. Each curve features zigzag shape, 
resulting from constituent failure in plies. The curve shown in Fig. 7(a) is for IM7/8551-7 
with stacking sequence of [90/0]2S. When the curve hits point A, fiber compressive failure 
occurs in 0° plies, therefore there is a great drop of stress value; however, 90° plies are still 
intact at this point, and as the strain keeps increasing, matrix initial failure occurs, resulting 
the nonlinear section of the curve from the drop after point A till point B, where matrix 
compressive failure occurs in 90° plies. In Fig. 7(b), we can see more peaks: point C is due 
to fiber compressive failure in 0° plies, whereas point D and E correspond to matrix and 
fiber compressive failure in ±45° plies respectively, and finally point F indicates matrix 
compressive failure in 90° plies. Although there are also two sharp points in Fig. 7(c), 
similar to Fig. 7(a), the physical reality represented by these two points is totally reversed: 
point G indicates matrix compressive failure in 90° plies while point H indicates fiber 
compressive failure in 0° plies. Before attaining point G, we can observe slight 



nonlinearity due to matrix initial failure in 90° plies. In Fig. 7(d), point I, J, and K 
correspond to matrix compressive failure in 90° plies, matrix compressive failure in ±45° 
plies, and fiber compressive failure in 0° plies, respectively. For given strain (5%), fiber in 
±45° plies remains intact, but if larger strain is provided, definitely there will be another 
peak after point K, showing fiber compressive failure in ±45° plies. 
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Fig. 7. Uniaxial compressive stress-strain curves of multi-directional laminates: (a) 
IM7/8551-7, [90/0]2S; (b) IM7/8551-7, [45/0/-45/90]S; (c) E-glass/MY750, [90/0]2S; (d) 
E-glass/MY750, [45/0/-45/90]S.  

 

Failure Prediction for Multi-axial Loadings 
Fig. 8 shows in-plane failure envelopes for IM7/8551-7 and E-glass/MY750 with two 

layup sequences: [90/0]2S and [45/0/-45/90]S. The thickness of each ply and the fiber 
volume fraction were respectively set to be 0.125 mm and 0.6 in all cases. Initial failure 
envelopes were plotted in dashed lines while final failure envelopes were in solid lines. 
Due to the symmetry of layup sequences, all failure envelopes are symmetric about the line 
along which 1 2σ σ= . Fig. 8(a) shows the initial and final failure envelopes of IM7/8551-7 
with a stacking sequence of [90/0]2S. Point A represents matrix final failure in all plies, and 
point G represents fiber tensile failure in all plies. Line segments AB and AF (both without 
endpoints) indicate matrix final failure in 0° and 90° plies respectively; whereas line 
segments GB and GF (both without endpoints) indicate fiber tensile failure in 90° and 0° 
plies respectively. At point B and F, the initial and final failure envelopes start to emerge 
as one, which means failure is dominated by fiber failure. This fact is also observable in 
Fig. 6(a), which corresponds to either point B or F: fiber fails right after matrix final failure. 
Sections BC and FE (both without endpoints) result from fiber tensile failure in 90° plies 
accompanied by matrix final failure in 0° plies, and fiber tensile failure in 0° plies 
accompanied by matrix final failure in 90° plies, respectively. Point C and E are turning 
points, at which fiber tensile/compressive failure occurs in all plies. To be more precise, 



point C indicates the concurrence of fiber tensile failure in 90° plies and fiber compressive 
failure in 0° plies, while point E indicates the opposite case: fiber tensile failure in 0° plies 
and fiber compressive failure in 90° plies. Sections CD and ED (both without endpoints) 
are attributed to fiber compressive failure in 0° plies accompanied by matrix final failure in 
90° plies, and fiber compressive failure in 90° plies accompanied by matrix final failure in 
0° plies, respectively. At point D, fiber compressive failure occurs in all plies. 

Fig. 8(b) gives the initial and final failure envelopes of IM7/8551-7 with layup 
sequence of [45/0/-45/90]S. Point H, L, and J stand for matrix final failure in all plies, fiber 
tensile failure in all plies, and fiber compressive failure in all plies, respectively. Line 
segments HI and HK (both without endpoints) represent matrix final failure in 0° plies and 
90° plies, respectively. The final failure envelope is ascribed to fiber failure in multiple 
plies: segments LI and LK (both without endpoints) are respectively owing to fiber tensile 
failure in ±45°, 90° plies and ±45°, 0° plies; while segments IJ and KJ (both without 
endpoints) are due to fiber failure in 0°, 90° plies (IJ & KJ, most of the second & fourth 
quadrants), fiber compressive failure in ±45°, 0° plies (IJ, the third quadrant), and fiber 
compressive failure in ±45°, 90° plies (KJ, the third quadrant). 
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Fig. 8. In-plane failure envelopes of multi-directional laminates: (a) IM7/8551-7, 
[90/0]2S; (b) IM7/8551-7, [45/0/-45/90]S; (c) E-glass/MY750, [90/0]2S; (d) E-
glass/MY750, [45/0/-45/90]S.  

 

Fig. 8(c) shows initial and final failure envelopes of E-glass/MY750 with a layup 
sequence of [90/0]2S. Referring to results shown in Fig. 6 and Fig. 7, we can conclude that 
under uniaxial tension/compression, for the given two different layup sequences, E-
glass/MY750 always has matrix final failure prior to fiber failure. This conclusion also 
holds for Fig. 8(c). The initial failure envelope, which is due to matrix final failure, is 
completely separated from the final failure envelope, which is due to fiber failure. At point 
M and O, matrix in all plies fails; line segments MN and MP (both without endpoints) 
denote matrix final failure in 0° and 90° plies, respectively; on the contrary, line segments 



NO and PO (both excluding point O) denote matrix final failure in 90° and 0° plies, 
respectively. Points Q and S correspond to fiber tensile and compressive failure in all plies; 
whereas fiber tensile failure in 90° plies concurs with fiber compressive failure in 0° plies 
at point R, and fiber tensile failure in 0° plies concurs with fiber compressive failure 90° 
plies at point T. Section QR, QT, RS, and TS (all without endpoints) corresponds to fiber 
tensile failure in 90° plies, fiber tensile failure in 0° plies, fiber compressive failure in 0° 
plies, and fiber compressive failure in 90° plies. 

Fig. 8(d) illustrates the initial and final failure envelopes of E-glass/MY750 with layup 
sequence of [45/0/-45/90]S. Point U, W represent matrix final failure in all plies, and point 
Y, Z respectively represent fiber tensile failure and compressive failure in all plies. Line 
segments UV and UX (both without endpoints) are attributed to matrix final failure in ±45°, 
0° plies and ±45°, 90° plies, respectively; while matrix final failure in ±45°, 90° plies and 
±45°, 0° plies contributes to the formation of segments VW and XW (both excluding point 
W), respectively. Considering the final failure envelope, segment YV and YX (both 
without endpoints) result from fiber tensile failure in ±45°, 90° plies (YV, the first 
quadrant), fiber tensile failure in ±45°, 0° plies (YX, the first quadrant), fiber tensile failure 
in 90° plies and fiber compressive failure in 0° plies (YV, the second quadrant), fiber 
tensile failure in 0° plies and fiber compressive failure in 90° plies (YX, the fourth 
quadrant). In the third quadrant, though the initial and final envelopes are quite close, they 
do not merge, meaning matrix final failure always precedes fiber failure. Sections VZ and 
XZ (both without endpoints) are mainly caused by fiber compressive failure in ±45°, 0° 
plies and ±45°, 90° plies, respectively. 

 

CONCLUSION 
With current MMF theory and the progressive damage model, we were able to 

predict the nonlinear mechanical behavior of UD and multi-directional laminate under 
various loading conditions, once the nonlinear behavior of matrix is known. In this 
paper we presented our prediction for several cases, which involve both UD and multi-
directional laminates made of different fiber/matrix systems, and multi-axial loading 
conditions. The current MMF theory is based on linear elasticity, which could be less 
accurate and less realistic, but its full 3-D capability allowed us to obtain prediction 
results without any difficulty. We are keeping updating the MMF theory as well as the 
progressive damage model, in order to provide more accurate failure prediction with 
less effort. 
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