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SUMMARY 

The piezo-aero-elastic modeling of a cantilevered plate-like wing with embedded 

piezoceramics is presented for energy harvesting. The piezoelectrically coupled 

unsteady aeroelastic behavior of a composite cantilever is investigated. In addition to 

piezoelectric power generation, the effect of resistive shunt damping on the aeroelastic 

response of the generator wing is observed.    

 

Keywords: Energy harvesting, piezo-aero-elasticity, piezoceramics 

 

INTRODUCTION 

Multifunctional structures are pointed out as a future breakthrough technology for 

Micro Air Vehicles (MAVs) and Unmanned Air Vehicles (UAVs) design. These 

structures perform additional tasks to its primary function [1]. Based on the concept of 

vibration-based energy harvesting the structure of an UAV or MAV can perform an 

additional task to its primary load carrying function: provide an additional source of 

electrical energy for these aircraft by converting vibrations available in their 

environment to electricity [2-6]. An additional electrical energy source can be useful to 

run small electronic components and ultimately to increase the flight time of the 

electrical power limited UAVs and MAVs. A possible source of energy for UAVs and 

MAVs is the mechanical vibration energy due to unsteady aerodynamic loads during the 

flight [7] and due to ground excitation in perching [8,9]. Piezoelectric transduction has 

received the most attention for vibration-based energy harvesting since four review 

articles have appeared in the last four years [2,4-6].  

The literature of piezo-aero-elasticity includes the use of piezoelectric materials as 

sensors or actuators. Piezoceramic actuators and piezo-fiber-composite actuators are 

used to counteract aeroelastic effects in fixed-wing aircraft and helicopters [10-12]. 

Researchers have also used piezoelectric actuators for morphing aircraft [13]. Anton and 



Inman [7] presented an experimental study on electrical power generation from the 

structural vibrations of a radio controlled glider in flight using piezoelectric patches at 

the roots of the wings and a piezoelectric cantilever inside the fuselage. Although 

aeroelastic vibrations constitute a useful additional energy source for UAVs and MAVs, 

a few papers have investigated the piezo-aero-elastic modeling of a generator wing at 

different airflow speeds. 

In this work, piezo-aero-elastic modeling of a plate-like wing with embedded 

piezoceramics is presented. The coupled model is obtained from the combination an 

electromechanically coupled finite element (FE) model with an unsteady aerodynamic 

model. Classical plate theory is employed in the formulation of the FE model [14]. The 

unsteady aerodynamic model given here is based on a vortex lattice model [15]. In 

solving the piezo-aero-elastic equations of motion in time domain, the dependence 

between aerodynamic and electromechanical domains has to be addressed correctly. 

Therefore a predictor-corrector scheme [16] is used to solve the equations of motion. 

The main motivation is the investigation of the piezo-aero-elastic behavior of the 

generator wing. The piezoelectric shunt damping effect on the aeroelastic response of 

the generator wing due to electrical power generation is also investigated. 

 

PIEZO-AERO-ELASTIC MODEL 

The piezo-aero-elastic model is obtained from the combination an electromechanically 

coupled finite element (FE) model with an unsteady aerodynamic model. 

 

Electromechanically Coupled Finite Element model 

Using the linear-elastic constitutive relation for an isotropic substructure material and 

the linear electroelastic constitutive relation for a transversely isotropic piezoceramic 

material (used here in the plane-stress form [14].) the generalized Hamilton’s principle 

for a piezoelectric energy harvester becomes, 
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where u is the vector of mechanical displacements, sc is the 2-D elastic stiffness matrix 

obtained as function of the Poisson’s ratio s and  the Young’s modulus sY  of the 

substructure material, S is the vector of mechanical strain components, T is the vector of 

mechanical stress components, D is the vector of electric displacement components, E is 

the vector of electric field components, c is the elastic stiffness matrix, e is the matrix of 

piezoelectric constants, ε  is the matrix of permittivity components, superscript E  and 

S  denote that the parameters are measured at constant electric field and constant strain, 

respectively,   is the mass density, V   is the volume, t denotes transpose when it is 

used as a superscript (otherwise it stands for the time) and an over-dot represents 



differentiation with respect to time. Here and hereafter, subscripts s  and p  stand for 

the substructure and piezoceramic layers, respectively; f  is the set of discrete 

mechanical forces applied at locations  ,i ix y , q  the set of discrete electric charge 

outputs extracted at locations  ,j jx y , nf is the number of discrete mechanical forces, 

j  is the scalar electrical potential and nq is the number of discrete electrode pairs. 

Typical piezoelectric energy harvesters, as depicted in figure 1, are designed to have 

cantilevered boundary conditions. The substructure and the piezoceramic layer of the 

unimorph piezoelectric energy harvester are assumed to be perfectly bonded to each 

other. The piezoceramic layer is bracketed by continuous and perfectly conductive 

electrodes with negligible thickness. A resistive load is considered in the electrical 

domain and the purpose is to estimate the power converted from the mechanical 

vibrations of the energy harvester plate. The electromechanically coupled FE model can 

be easily modified to represent a bimorph harvester as stated in the end of this section.  

  

 
 

Figure 1. A unimorph piezoelectric harvester with clamped-free boundary conditions. 

 

A rectangular finite element with four nodes and three mechanical degrees of freedom 

per node (namely the displacements ux, uy and uz in x, y and z directions) is used to 

model the substructure and the piezoceramic layer. Based on the assumption that each 

finite element of the piezoceramic layer is completely covered with perfectly conductive 

electrodes, one electrical degree of freedom (voltage pv  across the electrodes) is added 

to the element for modeling the electrical domain of these elements. 

Based on the Kirchhoff plate theory, shear deformations and rotary inertias of the finite 

elements are neglected and in-plane displacements (ux and uy) are assumed to be due to 

the bending (cross-section rotation) of the plate only. The displacement field is then 
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where the displacement components ux, uy and uz at a thickness level z from the 

reference (neutral) surface are given in terms of the transverse deflection (w) of the 

reference surface. 

The mechanical strain components can be written as 
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The vector of nodal variables for the rectangular finite element can be defined as 
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where kw  is the transverse displacement for of node k, 
,k k

xk x y
w y     and 

,k kxyk y
w x     are the bending rotations. To derive the element matrices, the 

displacement field u described by Eq. (2) and consequently the strain components S 

described by Eq. (3) have to be expressed as functions of nodal variables. This is done 

expressing the transverse displacement (consequently the cross-section rotations) and 

the vector of curvatures in terms as, 
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where are  
ηB and  κB  are 3 12  matrices defined as interpolation functions. 

The piezoceramics are assumed poled in the thickness direction (z-direction). Therefore 

the vector of electric field components can be expressed as, 
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The foregoing electrical relation and the previous mechanical equations (Eqs. 2 to 6) are 

used in the generalized Hamilton’s principle given by Eq. (1) to give the element mass 

( m ) and stiffness ( k ) 12 x 12  matrices, electromechanical coupling (θ ) and external 

force ( f ) 12 x 1 vectors and the scalar capacitance term ( pc ). The global equations of 

motion are then obtained by assembling the element matrices resulting in the equations, 
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where M  is the global mass matrix ( m mn n ), K  is the global stiffness matrix ( m mn n ) 

and Θ  is the global electromechanical coupling vector ( 1mn  ), pC  is the global 

capacitance term (scalar), F  is the global vector of mechanical forces ( 1mn  ),Ψ  is the 

global vector of mechanical coordinates ( 1mn  ), pv  the voltage output measure from 

the electrodes and lR  is the external resistive load. Equations (8a) and (8b) are modified 



versions of the originally obtained equations. A transformation that accounts the 

presence of full electrodes bracketing the piezoceramics was used to modify the original 

equations [14]. Here, 
mn  and 

en , respectively, are the number of mechanical and 

electrical degrees of freedom of the harvester plate. In Eq. (8a), the global mechanical 

damping matrix (
m mn n ) is assumed to be proportional to the mass and stiffness 

matrices: 
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where   and   are the constant of proportionality. 

This FE model is easily modified to represent a bimorph harvester (one substructure 

layer bracketed by two identical piezoceramic layers). The mass, stiffness and damping 

matrices have to consider the additional piezoceramic layer. For the bimorph in series 

connection case treated here the piezoceramic layers are assumed poled in the opposite 

direction, the effective electromechanical coupling vector is equal to that of one 

piezoceramic layer and the effective capacitance is one half of the capacitance of one 

piezoceramic layer [17]. 

 

Unsteady Aerodynamic Model 

An unsteady vortex-lattice aerodynamic model (VLM) is used to obtain the loads over a 

cantilever plate-like wing [15]. A planar vortex ring is associated with each rectangular 

panel of the body itself and its wake. The aerodynamic loads on the wing are obtained 

by combining these singularities with the incompressible potential flow around the 

body. The leading segment of each planar vortex ring is placed at the quarter chord 

point of the panel. A control point is placed at the three-quarter chord of each panel for 

the verification of boundary condition that the normal component of the velocity of the 

fluid is zero across the solid boundaries of wing: 
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where   is the gradient of the velocity potential corresponding to the perturbed 

velocity induced by the vortex singularities on the wing, motionv  is the velocity due to 

wing motion, wakev  is the velocity induced by the wake on the control points and n 

represents the normal direction to the surface of wing at the control points. The 

boundary condition has to be satisfied at each time step of this unsteady solution and 

this way the correct values for the circulation of vortex singularities are obtained. 

The velocity induced at an arbitrary point by a straight segment of a vortex ring is given 

by the Biot-Savart law. This way the perturbed velocity induced by the vortex 

singularities on the wing depends on the geometrical characteristics of the aerodynamic 

grid (position of vortex ring corners and control points) and on the circulation values 

(the unknowns at each time step of the numerical solution scheme). If the surface of the 

plate-like wing has m panels ( m R S  , where R and S are the number of panels along 

the chord and span, respectively) and consequently m vortex rings and control points, 

one can express the boundary condition in terms of the influence coefficients as, 
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where KLa  is the influence coefficient that relates the circulation at the vortex ring K to 

the inner product of the perturbed velocity at point L. Both counters K and L can have 

values from 1 to R S . For example to scan all the vortex rings influencing the control 

point K, an inner scanning loop is need with the counter 1L S R   . The unknowns 

in this linear set of equations are the circulations m  of each vortex ring. The term 

motionv  is given by the free stream velocity plus velocities of the control points due to 

structural deformations of the wing. The free stream is always known; the velocities of 

the control points are determined by solving the electromechanically coupled FE model 

in time domain. The velocities induced by the wake wakev  are also obtained using Biot-

Savart law. At each time step, new vortex rings are formed and shed from the trailing 

edge to the wake. The Kutta condition is satisfied imposing the circulation values of the 

most recently shed vortex rings at each time step as the same as those at the trailing 

edge (shedding vortices) in the previous time step. The circulation of the vortex rings on 

the wake remains unchanged and the wake carries no aerodynamic loads. The 

circulation values for the vortex rings placed on the wing are obtained from the solution 

of the linear system of equations given by Eq. (11). Therefore the aerodynamic load for 

each panel can be calculated from the unsteady Bernoulli equation. 

 

Combination of the models and the numerical integration scheme 

The equations of motion obtained from the FE formulation can be represented in modal 

domain as 
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where η  is the vector of modal coordinates, Φ  is the modal matrix (mass normalized so 

that the modal mass M  is the identity matrix), C  is the diagonal modal damping 

matrix, K  is the diagonal modal stiffness matrix, F is the vector of aerodynamic loads 

and aΦ  is the modal matrix in aerodynamic coordinates. Note that in this equation 

aΦ accounts for the conversion of aerodynamic loads to the FE nodes.  

In addition, structural displacements obtained at the nodes of FE mesh at each time step 

have to be obtained at the corners of vortex rings (aerodynamic mesh) for calculation of 

the aerodynamic loads. This way another transformation matrix is introduced to convert 

the modal coordinates to the corners of the vortex rings 
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where ax  is the vector of aerodynamic coordinates and the matrices aΦ  and *

aΦ  are 

interpolated in this work using surface splines. 

The equations of motion can be written as a system of 2n + 1 first order ordinary-

differential equations, where n is the number of modes taken into account in the 

solution. The 2 1n  ordinary-differential equations are then solved using the Adams-

Bashforth-Moulton predictor-corrector scheme that accounts for the interaction between 

aerodynamic and electromechanical domains [16].   

 

RESULTS 

This section presents the piezo-aero-elastic behavior of a cantilevered plate-like wing 

with embedded piezoceramics. Two identical layers of (PZT-5A) are embedded into the 

top and on the bottom of the plate. Conductive electrodes bracketing the piezoceramic 

layers are connected in series to a resistive electrical load as depicted in figure 2.  It is 

important to mention that the electromechanical coupled FE model has been 

successfully verified [14] against the analytical results obtained from the closed-form 

solution given by Erturk and Inman [17] for a unimorph harvester under base excitation 

and also against the analytical and experimental results for a bimorph harvester with a 

tip mass under base excitation presented by Erturk and Inman [18]. The aeroelastic 

model (with no piezoceramic added) has been verified against the numerical results 

presented by Tang et al [19]. 

 

 

Figure 2. Generator wing with embedded piezoceramics (series connection). 

 

The dimensions of the plate-like wing used in this work are 1200 × 240 × 3 mm
3
. The 

identical embedded piezoceramic layers have the same width as the wing chord. The 

embedded piezoceramics layers cover 30% of the wing span (from the root to the tip) 

and each one has a thickness of 0.5 mm. The geometric and material properties of the 

wing (aircraft aluminum alloy Al 2024-T3) are presented in Table 1. 

 

Table 1. Geometric and material properties of the aluminum wing  

Length of the wing (mm) 1200 Mass density (kg/m
3
) 2750 

Width of the wing (mm) 240 Proportional constant – α (rad/s)      0.1635 

Thickness of the wing (mm) 3 Proportional constant – β (s/rad)     4.1711 x 10
-4 

Young’s modulus (GPa) 70.0   

 

The material and electromechanical properties for PZT-5A are given in Table 2. The 

plate-type formulation given here requires more than what is provided in the 

manufacturer’s data sheet (see, for instance, the properties required for the calculation 

of the plane-stress elastic, piezoelectric and dielectric components in [14]). Therefore, 

the 3-D properties of PZT-5A displayed in Table 2 are used here. 



Table 2. Material and electromechanical properties of PZT-5A 

Mass density (kg/m
3
) 7800 33

Ec  (GPa) 110.9 

Permittivity  (nF/m) 0
1800   

66

Ec  (GPa) 22.7 

11 22,E Ec c  (GPa) 120.3 31 32,e e  (C/m
2
) -5.2 

12

Ec  (GPa) 75.2 33e  (C/m
2
) 15.9 

13 23,E Ec c  (GPa) 75.1   

 

The mode sequence and the undamped natural frequencies for the plate-like wing 

obtained from the FE model for short-circuit conditions (very low load resistance) is 1
st
 

B (1.68 Hz), 2
nd

 B (10.46 Hz), 1
st
 T (16.66 Hz), 3

rd
 B (27.74 Hz) and 2

nd
 T (48.65 Hz). 

Here B and T stand for the bending modes and torsion modes, respectively. The span-

wise elastic axis and the center of gravity are coincident at 50% of chord.   

One can observe in figures 3a and 3b the piezo-aero-elastic behavior of the generator 

wing for the short-circuit conditions. Figure 3a shows the frequency content of the five 

modes considered during the simulation. For the airflow speeds smaller than 20 m/s the 

frequencies are still similar to the undamped natural frequencies (which is given for the 

case without airflow). Increasing airflow speed results in coupling among the modes. 

For the airflow speed of 40 m/s the modes are coupled at the flutter frequency (12.2 

Hz). The motion of the plate-like generator wing at the flutter speed is quite dominated 

by a second bending mode with some torsion coupling. 

 

(a)   (b)  

Figure 3. (a) Frequency content for three different flow speeds; (b) variation of total 

(structural and aerodynamic) damping ratio with increasing flow speed. 

 

The variation of total damping ratio (summation of structural damping and aerodynamic 

damping) for the second vibration mode with increasing airflow speed is presented in 

figure 3b. Damping has a major effect in vibration-based power harvesting. Therefore 

larger mechanical amplitudes and consequently larger power outputs are expected for 

large aerodynamic loads and low damping which is the case for airflow speeds around 

the flutter condition. 

The time history of power output for the flutter speed is shown in figure 4a. The power 

output increases as the value of load resistance is increased from 210  lR    to 
410  lR    as can be observed in the enlarged view of figure 4a. Power output is 

continuously extracted over the time in this underdamped case. Clearly the value of load 

resistance 410  lR    provides the maximum power output among the set of load 

resistances considered here. Note that the time history with the largest power for this 

load resistance shows a decaying behavior which is due to the strong shunt damping 



effect of power generation for 410  lR   , what can also be verified in figure 4b. If 
lR  is 

increased to 510   , the amplitude of power output decreases. When the load resistance 

is further increased to 610  lR    the power output is considerably reduced to values 

similar to the values obtained for 210  lR    (enlarged view in figure 4a). 

 

(a)   (b)  

Figure 4. (a) Power output for five different values of load resistance at the flutter speed; (b) tip 

displacement for five different values of load resistance at the flutter speed. 

 

CONCLUSIONS 

It is observed that the aeroelastic behavior as well as vibration-based energy harvesting 

are strongly modified by the variation of aerodynamic damping. Clearly the most 

favorable conditions for power harvesting using the plate-like generator wing occur for 

airflow speeds higher than 30 m/s and especially for very low values of aerodynamic 

damping. At the flutter speed, the aerodynamic damping vanishes and the oscillations 

are persistent. Although this condition is avoided in a real aircraft, this is the best 

condition as a concept demonstration for the generator wing investigated here. 

In addition to the benefit of electrical power generation from aeroelastic vibrations, the 

resistive shunt damping effect is observed. An optimum value of load resistance (among 

the values considered in this work) is obtained and the amplitude of motion is reduced 

especially for the loads yielding larger power output. Therefore, it is possible to define a 

short-circuit flutter speed and a slightly larger open-circuit flutter speed. 
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