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SUMMARY 

A 3D nonlinear finite element model for single-walled carbon nanotubes with atom 

vacancy defects is proposed. The model is consistent with molecular mechanics 

formulations. Assuming defects in CNTs their influence on nanocomposite properties is 

discussed. The results are presented in the form of the strain-stress relations. The 

effective properties are evaluated with the use of the homogenization theory. 
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INTRODUCTION 

Carbon nanotubes (CNTs) hold considerable promise as ultra-stiff high-strength fibers 

for use in cabling and nanocomposites. The outstanding mechanical characteristics hold 

for nearly  perfect CNTs. Several theoretical studies have reported CNT failure strains 

in the range of 20–30% and failure stresses usually in excess of 100 GPa. By contrast, 

the few direct mechanical measurements that have been reported indicate much lower 

values. Most attempts to resolve the theoretical–experimental discrepancies have 

concentrated on the possible role of defects in limiting peak strengths. If CNTs have 

defects in the atomic network, one can expect that due to their quasi-one-dimensional 

atomic structure even a small number of defects will result in some degradation of their 

characteristics. The defects can appear at the stage of CNT growth and purification, or 

later on during device or composite production. Moreover, defects in CNTs can 

deliberately be created by chemical treatment or by irradiation to achieve the desired 

functionality. Therefore, possible defects in CNTs can be classified in the following 

manner: 

 

� Point defects such as vacancies, 
� Topological defects caused by forming pentagons and heptagons e.g. 5-7-7-5 
defect – so-called Stone-Wales defects, 

� Hybridization defects caused due to functionalisation.   
 

Different approaches have been used to explore the role of vacancy defects in the 

fracture of CNTs under axial tension. In general, they can be divided into two groups: 

single- or two-atom vacancy defects Mielke et al. [1-5] or axisymmetric fracture 

patterns (defects) [6, 7]. However, the majority of existing works deals with the analysis 

of the Stone-Wales transformation that results in ductile fracture for nanotubes [8-11]. 



Significant challenges exist in both the micromechanical characterization of nanotubes 

and their composites and the modeling of the elastic and fracture behavior at the nano-

scale. In general they include (a) complete lack of micromechanical characterization 

techniques for direct property measurement, (b) tremendous limitations on specimen 

size, (c) uncertainty in data obtained from indirect measurements, and (d) inadequacy in 

test specimen preparation techniques and lack of control in nanotube alignment and 

distribution. The above-mentioned problems and the description of nanocomposites 

fracture modeling are discussed in Refs [12-15].  

It is worth to point out that the theoretical analysis of CNTs and nanocomposites 

fracture problems has adopted: the atomistic approaches (classical molecular dynamics 

(MD) and mechanics (MM)) and the continuum mechanics approaches. 

 

INTERATOMIC POTENTIALS 

To capture the essential feature of chemical bonding in graphite Brenner [16] 

established an interatomic potential (called as the REBO potential) for carbon in the 

following form:  
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where rij is the distance between atoms i and j, and the parameter Bij is given by: 
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where θijk is the angle between bonds i _ j and i _ k, and the set of material parameters is 

adopted here as follows: 

 

De = 0.9612 nN nm; S=1.22; β=21 nm
-1
; R= 0.139 nm; δ= 0.5, a0 = 0.00020813,  

 

c0=330, d0=3.5                 (3) 

 

For nanocomposites the bonding between the nanotube and the matrix is in general 

modeled by van der Waals interactions. For simulations of van der Waals interactions 

the Lennard-Jones ‘‘6–12’’ potential is adopted herein and is written as: 
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For carbon atoms the Lennard-Jones parameters are ε = 0.0556 kcal/mole and σ = 3.4A˚ 

[15]. 

 

 



NUMERICAL MODEL 

Carbon Nanotubes 

In the present study a numerical efficient formulation for modeling CNTs is presented 

based on the geometrically exact theory together with a fnite element discretization 

incorporating atomistic potentials. This approach offers several advantages primarily 

related to the model’s computational efficiency and to the possibility of a simple 

implementation into existing commercial  FE codes.  

Let us consider that the hexagon, which is the constitutional element of CNTs nano-

structure, is simulated as structural element of a space-frame made of 3D beams . Of 

course, in the same way the entire nanotube lattice may be modelled. The simulation 

leads to the correspondence of the bond length C–C with the 3D beam element length L 

and with the element diameter d characterizing a circular cross-sectional area for the 

element. The linkage between molecular and continuum mechanics can be made by an 

appropriate definition of 3D beam mechanical properties.  

Based on the energy equivalence between local potential energies in computational 

chemistry and elemental strain energies in structural mechanics, we can determine the 

tensile resistance, the flexural rigidity and the torsional stiffness for an equivalent beam. 

If the beam element is assumed to be of round section, then only three stiffness 

parameters, i.e., the tensile resistance EA, the flexural rigidity EI and the torsional 

stiffness GJ, need to be determined for deformation analysis. By considering the energy 

equivalence, a direct relationship between the structural mechanics parameters and the 

molecular mechanics force field constants can be established [15], i.e.: 
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where kri, kθi and kti are the force field constants in molecular mechanics. They are 

indexed by the number of the beam occurring in the RVE for a given nanotube 

structure. For zigzag and armchair configurations the RVE are plotted in Fig.1.  

 

 

 

Fig. 1 Representative volume elements of an a) armchair CNT and b) zigzag CNT. 



Let us note that the present formulation is an extension of the models proposed in Refs 

[7,15], and on the other hand, it incorporates special features of molecular mechanics 

models. In addition, it allows to analyze large deformations of CNTs since the beam 

length L in Eqn (5) is replaced by an actual beam length ri different for different beams 

in the RVE.  

By comparing energies of the mechanical and molecular diatomic systems the force 

constants kri, kθi can be derived. Using the interatomic potentials shown in Eqs (1) and 

(4), the stretching force that results from the bond elongation ∆ri and the twisting 

moment that results from the bond angle variation ∆θi can be calculated as follows: 
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The derivatives in Eqn (6) are expanded in the Taylor series up to the first derivative 

(linear terms) only. However the initial values r0i and θ0i are modified at each iteration 

step since, in fact, both the stretching forces and the twisting moments are nonlinear 

with respect to the bond length and to the bond angle, respectively.     

By assuming a circular beam section with diameter di, and setting Ai=πd
2
/4, Ii=πd

4
/64, 

Eqs. (5,6) give: 
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Then, following the procedure of the finite element structural mechanics technique, the 

nanotube deformation under certain loading conditions can be readily solved. It is worth 

to note that Young’s moduli E1 and E2 are different even for the linear part of the stress-

strain curve since the beam lengths ri are different at each iteration step, and the force 

constants kri and kθi are nonlinear functions of r and θ, respectively, as the second 

derivatives of the interatomic potential.  

 

Nanocomposites 

The nanotube is modeled at the atomistic scale (see the previous section) whereas the 

polymeric matrix is much more convenient to treat as a continuum. For convenience, 

the CNTs are considered as straight fibers embedded in the composite. Therefore, for 

simulations of van der Waals interactions at the nanotube/polymer interface, a truss rod 

model is adopted – see Li, Chou [15]. It is assumed that the nanotube is embedded in 

the matrix (Fig. 2a). Because the volume of the matrix is usually much greater than that 

of the reinforcement, the polymeric matrix is modeled as a continuum with the use of 

the classical 3D finite elements. At the nanotube/polymer interface 3D finite elements 

are connected with the CNTs by a system of rods (Fig, 2a). It is assumed that the rods at 

the nanotube/polymer interface have the length less than 0.4 [nm]. The Lennard-Jones 

potential describes the mechanical properties of the rods.  

 

 

 



 
a) b) 

Fig.2 Nanotube/polymer interface 

 

Modeling of atom vacancies 

Let us assume that a single atom is removed from the lattice being a pristine tube. Thus, 

12-membered ring (two hexagons) can be reconstructed for instance to a five-membered 

ring and a nine-membered ring – see Fig.3, and finally we obtain non-axisymmetric 

CNTs. 
 

 

Fig.3 The one-atom vacancy defect 

Of course, using the similar approach it is possible to model various types of defects. 

 

NUMERICAL RESULTS 

In our approach the Young’s modulus of a material is defined as the ratio of 

longitudinal stress to longitudinal strain as obtained from a uni-axial tension test. 

Following this definition, the Young’s modulus of CNTs is been calculated using the 

following equation: 
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where longσ / longε  is an average longitudinal stress/strain component computed as 

the sum of longitudinal components of each individual beams characterizing C-C bonds. 

Let us note that the above definition is more general than that described as the global on 

in the first section and it is consistent with the homogenization theory. For 

nanocomposites the average values are supplemented by the components obtained from 

the FE characterizing polymeric matrix and the nanotube/polymer interface (see Fig.2). 

At each load step corresponding to the increments of the axial displacements, the 

molecular mechanics force field constants with the use of Eqn (6) as well as the beam 

geometrical and mechanical properties – Eqn (7) are evaluated in order to find the 

longitudinal stress components in individual beams.  This iterative, non-linear procedure 

goes on to the prescribed end of the deformation process. The accuracy of modeling 

procedure depends on the number of load steps chosen. In order to maximize the 

accuracy of computational results, in each case, the displacement increment was chosen 

from convergence tests in which the convergence criterion was set equal to 2% of the 

maximal stress. Thereby, if between two sequential displacement increments a 

difference smaller than the 2% was achieved in the computed maximal stress, the larger 

displacement increment was finally adopted for the analysis. 
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Fig. 4 Tensile stress-strain curves for pristine and defective (5,5) nanotube 

 

Figure 4 shows the calculated stress-strain curves and Young’s modulus of pristine and 

defective (with one-atom vacancy) carbon nanotubes from the present models. At the 



beginning we have compared the Young’s moduli of (5,5) armchair CNTs. The 

predicted  initial Young’s modulus of CNTs are 797 GPa and 708 GPa for the pristine 

and defective CNT, respectively, which agrees well with the experimental value and 

other theoretical values mentioned previously. Those values are strongly dependent on 

the form of the assumed interatomic potential and the form of defects.  The defects 

reduce the failure stresses by 19 %, and failure strains by 32 %. It may reduce also 

buckling stresses for compressive loads since the defect considered may be treated as an 

geometrical imperfection for cylindrical shells. It is also obvious that the reduction 

factor is significantly dependent on the form and magnitude of imperfections (the 

assumed type of defects).  

For CNT with defect considerable bond angle change are observed. Some of the initial 

bond angles deviate considerably from perfect tube. 
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Fig 5. Tensile stress-strain curves for pristine and defective nanocomposites reinforced 

by the armchair (5,5) nanotube (4% wt) 

 

Here, we calculate the critical strains of defect nucleation and fracture of CNTs 

embedded in a matrix by using our numerical/mechanics model. The interaction of 

CNTs in a composite may influence their deformation and fracture behaviors. the 

Young’s modulus and Poisson’s ratio of the matrix are taken as Em =40GPa and νm 

=0.2, respectively. 

Figure 5 illustrates the stress-strain curves for nanocomposites reinforced by perfect and 

imperfect CNTs – the imperfection has the form presented in Fig. 3.  

It is found that when a CNT is placed in a composite, its critical strain of breaking will 

decrease. The critical strain of fracture of the (5,5) CNT is about 22.4 %, and reduces to 

21.3% after it is embedded in the composite. Similarly, the critical strain of breaking of 

the defective (5,5) CNT decreases from 14.3% to 13.1% after it is put into the 

composite. This might also be attributed to the constraint effect of the matrix. A CNT 



embedded in a composite is less effective to release the energy, and becomes easier to 

fracture than that not embedded. In the present paper, we do not consider the fracture of 

the polymer matrix though in reality most polymers cannot sustain such a high tensile 

strain. The above effects are also associated with the reduction of Young’s modulus and 

the critical (failure) stresses. The values of critical strains and stresses are highly 

affected by the assumed values of the matrix Young’s modulus. The critical strains 

decrease with the increase of the value Em.  
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