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SUMMARY 

The cocoon of the commercial silkworm Bombyx mori is used as a model natural 

nonwoven composite to formulate a model for structural properties of nonwoven 

composites.  The model is based upon open cell foam structures for the intrinsic 

undamaged elastic properties using the component materials in the cocoon, combined 

with the effect of gradual loss of connectivity in the interfiber bonding as the cocoon is 

damaged by increased stress or strain loading.  At a critical strain, the bonding 

connectivity falls below a percolation threshold, and strength falls rapidly to a point 

where the cocoon is held together by loosely interwoven silk fibres. 
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INTRODUCTION 

As part of our work on natural silk materials, we are investigating structure-property-

function relations in silkworm cocoons in order to understand the design rules behind 

this natural nonwoven composite material.  These structures have evolved over millions 

of years by a process of natural selection to sustain and protect moths and butterflies in 

a wide range of different environments and exposed to many different threats and 

predators.  Since cocoons are very similar in structure to a wide range of nonwoven 

composite materials, we suggest that understanding of structure and properties in 

natural cocoons will be a useful guide to understanding those materials and to develop 

design tools for their optimisation.   

The work outlined here suggests a physically realistic model to analyse the properties of 

cocoons, based upon a very small number of material parameters that can be measured 

or calculated independently, but which embody all the effects that are observed during 

the deformation of a cocoon through to failure. Since the same effects are characteristics 

common to many different types of nonwoven material (ranging from paper to 

nanofibre mats), we believe that the model will have general interest for the composites 

community, with perhaps a wider applicability than just for nonwoven composites 

Cocoons:  Structure and Properties 

Cocoon shells produced by silkworm caterpillars are a kind of natural polymeric 

composite material in a non-woven structure. It has a similar micro-structure to other 

stochastic fibrous materials such as paper, nonwoven textiles and electrospun polymer 

mats. 

A cocoon is a natural polymer composite shell made of a single continuous silk strand 

with a length in the range of 1000-1500m and conglutinated by sericin. Each fibre is 



composed of two fibroins conglutinated by a layer of sericin. Silk fibroin is a natural 

fibrous protein with a semicrystalline structure. It accounts for about 75 wt.% in the 

fibre. Sericin is an amorphous protein polymer that accounts for 25 wt.% and acts as an 

adhesive to maintain the structure of two fibroins in a fibre and the whole cocoon [1, 2]. 

Figure 1 shows a hierarchical set of pictures of the cocoon structure, from the full 

cocoon to the individual fibre-sericin combination. 

Research has been carried out on mechanical behaviour of silk fibres, and Zhao et al. 

have studied the mechanical properties of silkworm cocoons. They measured the tensile 

properties of the cocoon and the layers, particularly the innermost layer [1, 2, 3].  

 

 

Figure 1 Hierarchy of the morphology of a Bombyx mori cocoon. 

A number of typical stress-strain plots for dogbone samples of cocoon walls are shown 

in Figure 2 for reference, alongside some pictures of the samples during failure.  The 

main observations are that the modulus reduces as the sample is damaged with 

increasing strain.  The main damage appears to be gradual breaking of bonds between 

fibres up to a strain of about 20%, at which point the stress reaches a maximum value 

and starts to fall with increasing strain.  Soon above the maximum stress, the stress fall 

rapidly with only small increases in strain.  Finally, we observe a more gradual loss of 

stress, where the fibres gradually disentangle and pull apart in a multi-delamination 

process, where individual layers in the overall thickness are separated. 
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Figure 2 Typical stress-strain measurements on cocoon wall samples, with pictures of 

cocoons as they fail to illustrate the damage mechanisms. 



Literature Review: strength models for nonwovens 

Although no specific mathematical models could be found for cocoons in the literature, 

there are a number of strength models for paper, which is also a random fibre network, 

albeit with a different bonded fibre structure.  

Models for the tensile strength of paper, such as the widely applied semi-empirical 

theory of Page [4] and the mechanistic theory of Kallmes [5, 6], separate the bonding 

contributions to tensile strength into the influence of the area of inter-fibre bonds that is 

bonded to other fibres, and that of the shear bond strength per unit area acting in these 

regions. Calsson [7] suggested that, for short fibre length and low RBA, the mechanism 

of failure was entirely by bond failure until a threshold of half the theoretical maximum 

strength of the network; above this threshold, both fibre and bond failure were 

considered to be involved in rupture. This model does not match all experimental 

observations.  

In a network under strain, the bonded regions of the fibre surfaces facilitate the transfer 

of stress between fibre segments. This is classic shear-lag theory [8]. Favourable 

comparisons between Cox’s theory and experiments have been reported [9-15], but 

shortcomings of the shear-lag model have been voiced by Raisanen [16, 17] that the 

transfer of axial stress in random fibre networks could not be accounted for by the 

shear-lag approach. Eichhorn [18] observed significant strains at the ends of fibres 

within the network, contrary to the prediction of Cox that strain would be zero at the 

fibre ends. S.J.I’Anson [15] suggests that when a network, in which the number of 

fibres per unit area is just above the percolation threshold, fails under a tensile stress, 

the dominant mechanism of failure will be that of bonds rather than fibres because the 

number of contacts per fibre is typically insufficient to transfer enough stress to a fibre 

for it to fail.  

People have sought to relate the strength of paper to its failure by scaling test results 

from small samples using classic Weibull’s theory [19-21]. It states that the strength of 

samples with no notch is influenced by sample geometry [22] and predicts an 

exponential decrease in the specific strength of a sample with increasing volume. This 

dependence arises because the probability of a ‘weak-link’ in the material under 

investigation increases with increasing volume. The key point about using a Weibull 

approach for paper is that failure probability is quantified as a statistical distribution of 

failure events (bonds breaking) around a stress value that is characteristic for a given 

material.   

PROPOSAL:  STATISTICAL DAMAGE MODEL 

The observations on the deformation and failure mechanisms in silkworm cocoons 

suggest very strongly that gradual breaking of bonds between the fibres leads to a 

reduction in the stiffness of the cocoons.  At a critical point, there are not enough bonds 

to sustain a load in the composite material and the fibres disentangle and pull apart.  We 

now need to develop a quantitative model that is physically realistic and embodies this 

process of bond breaking to predict the full stress-strain profile to failure in terms of the 

properties of the component materials and the morphological structure of the natural 

nonwoven composite material. 

We will start by describing typical properties for the cocoon component materials of 

fibres and sericin matrix adhesive and calculate the undamaged modulus of the cocoon 



by using an open cell foam model to scale modulus in terms of density.  Then, most 

importantly, we calculate the strength of a typical bonding site as two fibres cross.  This 

bond strength will depend upon the size of the bond and we can scale the bond strength 

to that of cocoon deformation events by means of the cocoon modulus relative to that of 

the solid material. The bond site strength can then be used as the reference parameter in 

an activation model to describe the statistical distribution of bond failure events through 

deformation to a critical percolation threshold point, where there is insufficient 

connectivity of bonding to sustain load.  

Component Material Properties 

Silk fibres are natural fibroin protein, coated by a layer of about 25% sericin, which 

bonds the fibres together at crossing points.  The elastic modulus of unwashed natural 

fibres is about 9 GPa, and a typical stress-strain profile to break at about 350 – 400 MPa 

is shown in Figure 3.   

Sericin is thought to be an amorphous protein with a large fraction of serin segments 

that have an -OH side chain that promotes adhesion. Unfortunately, sericin is very 

brittle, so experimental measurement of its mechanical properties is quite difficult.  

Figure 3 also shows a theoretical prediction for the stress-strain profile of sericin [23], 

which we have seen is very similar to experimental data for amorphous regenerated silk 

fibres.  The key predicted parameters are a low strain modulus of 4 GPa and a tensile 

yield stress of about 130 MPa.  Polymer structure-property relations [24] can be used to 

estimate the brittle failure stress of sericin to be about 130 MPa, which is the same as 

the yield stress.  Thus, sericin is a typical matrix binder that is right on the boundary 

between brittle and ductile. 
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Figure 3 Typical observed stress-strain profile for a Bombyx mori fibre and predicted 

profile for sericin.. 



If we take the sericin strength to be 130 MPa with a modulus of 4000 MPa, we can 

assign a linear elastic failure strain for reference purposes of f  0.033.  This is useful, 

because we can then scale this elastic energy density from the sericin to the cocoon to 

estimate a characteristic activation strain, a, in the cocoon that can be associated with 

bond breaking.  Since most of the elastically active material in the cocoon is fibroin 

with a modulus Yf = 9000 MPa and the cocoon has a modulus of Yc  300 MPa, we can 

scale elastic strain in energy density to suggest characteristic activation stain, a 

18.0
300

9000
033.0 

c

f

fa
Y

Y
     (1) 

This activation strain will become a reference point, relative to which the statistical 

process of bond breaking in the cocoon can be calculated.  This strain suggests that the 

maximum stress in a cocoon if likely to be of the order of about 50 MPa, since the 

modulus is about 300 MPa, as shown below. 

Cocoon Modulus: Open-cell Foam Model 

To start the stress-strain profile, we first need to calculate the intrinsic modulus of a 

cocoon before any damage has occurred.  Models are available for morphologically 

similar materials.  Open cell foams allow the free passage of gases between the cells, 

since the cells consist of strands of material with no film between them to enclose the 

cells. This is important for cocoons, since it allows metabolic processes such as 

breathing and water exchange. Models have been developed to provide structure-

property relations for such cellular solids. Since most foams do not contain straight-

through struts, beam bending rather than stretching comes into play, which leads to 

relatively low modulus of the material.  A simplified 2D model structure for an open 

cell foam is shown below in Figure 4. 

 

Stress

 

Figure 4 A simplified open cell foam model structure, showing bending of the struts 

under stress for a low modulus. 



Most theoretical attention has been focused on simple three-dimensional cell structures 

with straight struts (or walls) arranged in periodic arrays at low densities. If the struts 

are finite, bending is activated at their intersection points and the Young’s modulus can 

be shown to be approximately proportional to density squared [25-27] (n = 2), in 

general agreement with experimental observation.   Zhu [28] and Warren [27] derived 

analytical results for an open-cell tetrakaidecahedral model packed in a body centred 

cubic array, which is a very general geometrical form that should be a good 

representation of a random fibre composite.  We applied the relation of Zhu [28] to our 

cocoons 
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and if /s  345/1300 = 0.265, then Y/Ys  0.037 .  For a fibre modulus 9 GPa, then the 

foam modulus becomes 333 MPa, which is observed. 

Statistical Damage Model 

To a first approximation, the ‘modulus’, Y, reduces as damage increases in the material 

with increasing tensile stress or strain as more voids are generated or bonding points are 

destroyed.  Let the damaged fraction be fd, such that the modulus of the cocoon is taken 

to be proportional to the undamaged fraction.  If Yo is the undamaged modulus, the 

reduction in Y with tensile strain, , relative to the strain associated with an activation 

energy for damage, a, is suggested to have a form of an Arrhenius activation function, 

where the activation energy and applied energy are taken to be proportional to strain 

squared. 
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If we simply take apparent stress, , to be (modulus x strain) at any point, with the 

parameters Yo and a obtained either from experimental results or model calculations, 

we get a relation for the stress-strain profile 
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Figure 5 shows the model predictions for the stress-strain profile of a cocoon compared 

to a typical experimental measurement, taken from Figure 2 and using modulus with 

value of 333 MPa and activation strain with a value of 0.18.  We see that the predictions 

are in good general agreement with observation, except that the stress falls rapidly at a 

critical strain soon above the point of maximum stress.  Percolation theory suggests that 

such an effect should happen when there is no connectivity path of bonds through the 

material to sustain the load.  The observed percolation strain is at about 0.22 relative to 

the activation strain of 0.18.  Equation (3) says that this point corresponds to a damage 

fraction of 0.5, which is of the correct size expected from percolation theory for a 

bonded lattice [29].  Finally, from observation, the higher strain tail of the stress profile 

is simply due to the fibres disentangling and the final local bonding being broken. 
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Figure 5 Comparison observed and predicted stress-strain profile using a modulus of 

333 MPa and an activation strain of 0.18, the percolation threshold is reached with a 

damage fraction of 0.5 a strain of 0.22. 

SUMMARY AND DISCUSSION 

The model developed in this work is a simple attempt to express qualitative 

observations on the deformation through failure of a natural cocoon as a physically 

realistic mathematical model.  The main features of a statistical distribution of bond 

breaking events at the start of deformation, followed my a more rapid fall in stress due 

to a catastrophic loss in bond connectivity at a percolation threshold are well 

represented by the model.  The model parameters are very simple measures of the 

undamaged modulus of the composite and a characteristic activation strain that 

quantifies the central mechanism of bonds breaking.  The general agreement between 

model predictions and experimental observations on the stress-strain profile is good. 

The model also embodies all the features required for nonwoven composites that were 

outlined in the brief literature survey, and has the considerable advantage of being 

mathematically much simpler than other models.  A large number of different cocoon 

types are found in nature with large differences in their nonwoven-type morphology and 

property requirements to sustain and protect different kinds of moths or butterflies 

under a range of different environmental conditions and threats.  We hope that future 

studies of these cocoons will allow us to understand the design rules that nature has 

evolved over millions of years for optimum performance, and that these design rules 

will also be useful for synthetic nonwoven composite material design. 



The model has also been applied to a very different family of composite materials, 

namely particulate composites such as concrete and polymer bonded explosives (PBXs) 

with some success [30].  The same rule of bond connectivity is applied this time to the 

bonds between particles and binder matrix, and the gradual increase in the number of 

failed bonds reduces the modulus in the same way. 
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