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SUMMARY 
In Liquid Composite Moulding processes, many important manufacturing parameters 
and final properties of the part are influenced by the constitutive behaviour of fibrous 
reinforcements.  A thermomechanical model for the response of fibrous materials to 
compaction is presented.  Rate-dependent and rate-independent features observed in 
experimental data are reproduced by the model. 
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INTRODUCTION 
Liquid Composite Moulding (LCM) is an all-encompassing term for composite material 
manufacturing processes such as Resin Transfer Moulding (RTM), Compression Resin 
Transfer Moulding (CRTM) and Vacuum Assisted Resin Infusion (VARI).  LCM 
processes allow one to form parts of small to large scale, having complex geometries 
and varying fibre reinforcement layup patterns.  The potential for lower cost processing 
via LCM has led to the increasing adoption of LCM processes within the aerospace, 
automotive and other industries. 

The development of a model for preform compaction described in this paper is part of a 
larger project to produce a full scale simulation of a generic LCM process.  As such, one 
requires a compaction model which is accurate, capable of capturing the salient features 
evident in experimental data and simple to characterise.  Furthermore, the 
computational expense of the model should not be prohibitively high. 

To date, several micromechanical approaches to modelling fibrous material behaviour 
have been carried out.  In 1946, van Wyk [1] likened a fibrous material to a random 
assembly of fibres in contact with one another, forming a collection of bending units 
between contact points, each governed by elementary beam theory.  A relationship 
between the average length of bending segments and total volume of the assembly was 
derived, leading to a non-linear power relation between applied compaction stress and 
fibre volume fraction.  Rate dependent phenomena and permanent deformation are not 
accounted for.  Other authors have also used this probability-based approach, extending 
the work to account for the fibre orientation distribution [2-4] and the inclusion of 
inelastic effects [5].  In the latter, a rate-independent hysteretic response is produced.  



On complete unloading, some strain energy remains locked in the fibres as a 
consequence of a fibre-fibre friction mechanism [5].   

The works mentioned thus far do not explicitly account for the microstructure within the 
tow.  On the scale of fibres forming a single tow, Cai and Gutowski [6] considered a 
bundle of lubricated aligned fibres and presented a model exhibiting non-linear 
elasticity and viscous effects.  This work was extended by Simacek and Karbhari [7], 
considering dry unlubricated aligned bundles, for which modes of permanent 
deformation were considered.   

Other micromechanical models employ an approach involving unit cells or 
representative volume elements, in which geometric details at the meso-scale, treating 
tows as solid bodies, are represented explicitly.  This is particularly useful in the case of 
knitted or woven fabrics [8-11].  Whilst details such as the yarn cross sectional shape 
are used in the prediction of the material response, these models do not reproduce the 
permanent deformation or rate-dependent effects present in experimental data, as this 
most likely requires interactions within the yarn to be considered.  At present, the 
computational expense of simulating the many thousands of individual fibres within the 
tow contacting and sliding against each other appears prohibitively high, particularly in 
a full-scale LCM simulation.   

An alternative approach to the micromechanical one involves a treatment of fibrous 
materials as continua.  Standard continuum mechanics permits the consideration of 
inelastic effects and is less computationally expensive than micromechanical models.  
Models built from a combination of individually simple spring, dashpot and friction-
block elements have successfully reproduced the permanent deformation and rate-
dependent response typical of fibrous materials [12-15].  The application of classical 
plasticity theory and standard viscoplastic models has also produced promising results. 
[16] 

The thermomechanical model proposed in this paper utilises a continuum approach, but 
lies within a framework which ensures that thermodynamic requirements are satisfied.  
Physical phenomena contributing to the material behaviour are postulated and defined 
through the evolution of state variables, which is additionally governed by the laws of 
thermodynamics.  In this way, physical aspects of micromechanical behaviour are 
incorporated into a continuum-based framework.  The resulting thermomechanical 
model thus inherits the physical basis of micromechanical approaches and the simplicity 
and low computational cost of continuum based models.  

The complexity of the constitutive response of fibrous materials is well documented.  
Diversity arises from the vast number of fibre architectures and fibre types available.  
Features common to the behaviour of most samples include non-linearity, permanent 
deformation and rate effects, the latter two giving rise to a hysteretic load-unload curve.  
In addition, a debulking response is observed, whereby the material response evolves 
with cyclic loading. 

Robitaille [17] performed a series of experiments on woven fabrics.  Debulking effects 
were observed, whereby the volume fraction following each successive load cycle 
tended towards a steady state value.  Equivalently, Somashekar [18] observed decay in 
the sample height with cycle number.  This was accompanied by decay in the peak 
compaction stress.  The permanent deformation as a percentage of the total deformation 
was also observed to decrease as compaction speed was increased.  



To illustrate the importance of modelling the hysteretic, rate dependent behaviour of 
fibrous preforms, consider the following LCM processes; 

In VARI, a first application of vacuum compacts the fibres.  Then, resin flow relieves 
the effective stress on the preform, leading to unloading of the fibres.  Furthermore, 
during post-filling, a re-loading occurs.  The preform is also often debulked through 
vacuum being drawn and released repeatedly prior to resin infusion.   

Similarly, in hard mould processes, the complex behaviour of the preform is necessary 
to accurately predict tooling forces.  Particularly in RTMLight, for which flexible 
moulds are applied, tool deformations during processing are dependent on mould 
rigidity and the complex behaviour of the preform and cannot be predicted accurately 
using a single history-independent loading curve.  

Clearly, a single loading curve is inadequate for accurate simulation of the processes 
mentioned above, underpinning the need for an accurate model which accounts for the 
complex behaviour of the preform. 

THERMOMECHANICAL MODELLING OF FIBROUS MATERIALS 
A thermodynamic framework for irreversible, isothermal processes such as that outlined 
in [19] is used, wherein one has the following thermomechanical statement: 

:ߪ ݀ ൌ Ψሶ ൅ Φ (1)

 and ݀ are the stress and deformation rate tensors respectively, their inner product ߪ
being the internal stress power.  The material behaviour is defined by two potentials; Ψ, 
the Helmholtz free energy potential and Φ, the dissipation rate.  Simply put, Ψ is a 
measure of energy stored within the material, whilst Φ is the rate at which energy is lost 
from the material to its surroundings (through heat transfer) and is non-negative by the 
second law of thermodynamics. 

As compared to classical models in plasticity, use of the thermomechanical framework 
is advantageous as it does not require at the outset the definition of relations such as the 
yield function or flow rule.  Indeed, these relations follow directly from knowledge of 
the energy and dissipation potentials. 

Fibrous materials 

There are a number of physical processes that may be postulated to determine the 
general deformation response of fibrous materials. 

As first proposed by van Wyk [1], the bending of fibres stores energy.  As noted by 
Carnaby [5], this energy may become frozen into the fibre assembly.  One could 
imagine fibres becoming locked into bent configurations during compression.  As this 
frozen energy is associated with permanent deformation of the material, it may not be 
recovered without reversal of the permanent deformation. 

Fibres exhibit frictional behaviour, providing an avenue for energy dissipation.  
Moreover, this frictional behaviour may determine certain aspects of the fibre locking 
mechanism mentioned previously. 

Viscoelastic, or rate-dependent effects, may arise from dissipative time-dependent 
rearrangement of fibres within tows, varying with the degree of load applied and the 
loading history. 



A SIMPLE 1-DIMENSIONAL MODEL 
Consider a one-dimensional model with a single internal variable.  Inelastic effects are 
attributed to evolution of the internal variable, so one equates the internal variable to the 
inelastic strain using the following decomposition: 

ߝ ൌ ௘ߝ ൅ ௘ߝ  ௜ߝ ൌ ߝ െ ௜ߝ  ߙ ൌ (2) ߙ

Furthermore, one assumes that the material is uncoupled, so that the elastic modulus is 
independent of the value of the inelastic strain.  Thus, the free energy potential takes the 
form: 

Ψሺߝ, ሻߙ ൌ Ψଵሺߝ െ ሻߙ ൅ Ψଶሺߙሻ   or equivalently,   Ψሺߝ, ሻߙ ൌ Ψଵሺߝ௘ሻ ൅ Ψଶ൫ߝ௜൯ (3)

It is evident that the term Ψଶ represents energy storage associated with inelastic strain, 
or frozen energy within the material due to fibres locked in bent configurations.   

The dissipation rate is sub-divided into two terms, representing rate-independent and 
rate-dependent inelastic effects.   

Φ ൌ Φଵ ൅ Φଶ ൌ డ஍భ
డఈሶ

ሶߙ ൅ ଵ
ଶ

డ஍మ
డఈሶ

ሶߙ   (4)

Φଵ and Φଶ are homogeneous functions of degree 1 and 2 respectively in the inelastic 
strain rate ߙሶ . 

Substituting the free energy (3) and dissipation (4) potentials into the isothermal 
thermomechanical statement (1), one obtains the following thermodynamic constraint: 

0 ൌ ቀడஏ
డఌ

െ ቁߪ ሶߝ ൅ ቀడஏ
డఈ

൅ డ஍భ
డఈሶ

൅ ଵ
ଶ

డ஍మ
డఈሶ

ቁ ሶߙ  , (5)

from which the following relations are deduced: 

ߪ ൌ డஏ
డఌ

ൌ Ψଵ
ᇱሺߝ െ   ሻߙ

ሺെ ҧ߯ ൅ ߯ଵ ൅ ߯ଵሻߙሶ ൌ 0 

ҧ߯ ൌ െ డஏ
డఈ

ൌ Ψଵ
ᇱሺߝ െ ሻߙ െ Ψଶ

ᇱ ሺߙሻ ߯ଵ ൌ డ஍భ
డఈሶ

 ߯ଶ ൌ ଵ
ଶ

డ஍మ
డఈሶ

 , 

(6)

where ҧ߯ is termed the quasi-conservative generalized stress and ߯ଵ and ߯ଶ are the 
dissipative generalised stresses for rate-independent and rate-dependent dissipative 
processes respectively.  The term Ψଶ

ᇱሺߙሻ is also referred to as the shift stress ߩሺߙሻ in 
theories of kinematic hardening, as it represents translation of the yield surface in 
generalized stress space, due to an evolution in the inelastic strain ߙ.   

Furthermore, the first equation in (6) can be expressed in rate form, where it is evident 
that the elastic modulus derives directly from the Ψଵ term of the free energy potential. 

ሶߪ ൌ డ
డ௧

Ψଵ
ᇱ ൌ ,ߝ௘ሺܭ ሶߝሻߙ ൅ ,ߝఈሺܭ ሶߙሻߙ   

,ߝ௘ሺܭ ሻߙ ൌ Ψଵ
ᇱᇱሺε െ αሻ ܭఈሺߝ, ሻߙ ൌ െΨଵ

ᇱᇱሺε െ αሻ  
(7)



Examining the second equation of (6), the equation is necessarily satisfied for elastic 
deformations, for which ߙሶ ൌ 0 by definition.  For inelastic processes (ߙሶ ് 0), the 
following relation between the shift stress and generalized dissipative stresses holds: 

െ ҧ߯ ൅ ߯ଵ ൅ ߯ଵ ൌ 0 (8)

Note that in the progression from equation (6) to equation (8) the generalized dissipative 
stresses are not necessarily independent of ߙሶ ; use has been made of Ziegler’s 
Orthogonality Hypothesis. [20] 

The specific forms of the free energy and dissipation potentials are chosen as shown 
below: 

Ψଵሺߝ െ ሻߙ ൌ ଵ
௠

ߝሺܧ െ ሻߙሻ௠ Ψଶሺߙ ൌ ଵ
௣

 ௣ߙܪ

Φଵ ൌ sgnሺߙሶ ሻሾ݂ߪ௤ ൅ ݇ሺߙሻሿߙሶ   Φଶ ൌ ηߙሶ ଶ 
(9)

The power-law form of Ψଵ imparts a non-linear elastic response, as is typical for fibrous 
materials.  Ψଶ accounts for the storage of frozen energy.  The dissipation functions are 
necessarily non-negative and hence comply with the second law of thermodynamics.   

Evaluating the associated thermodynamic forces for the free energy potential and the 
generalised dissipative stresses for the dissipation rate, one has: 

ߪ ൌ ߝሺܧ െ ሻ௠ିଵ  ҧ߯ߙ ൌ ߪ െ ሻߙሺߩ   ሻߙሺߩ ൌ  ௣ିଵߙܪ

߯ଵ ൌ  sgnሺߙሶ ሻሾ݂ߪ௤ ൅ ݇ሺߙሻሿ   ߯ଶ ൌ ηߙሶ  , 
(10)

from which it is clear that the choice of dissipation functions yields frictional and rate 
dependent dissipative behaviour.  The presence of the function ݇ሺߙሻ accounts for the 
non-zero frictional forces within fibrous materials under zero load, as proposed by 
Carnaby and Pan [5].  This withdrawal stress is assumed to increase with the extent of 
inelastic strain.  In this formulation, a simple linear function of the inelastic strain was 
chosen.  

The relation governing inelastic behaviour (8) may be rewritten as: 

ߪ െ ሻߙሺߩ  െ  sgnሺߙሶ ሻሾ݂ߪ௤ ൅ ݇ሺߙሻሿ െ ηߙሶ ൌ 0 , (11)

giving rise to the evolution equation for the inelastic strain: 

ሶߙ ൌ
ߪ െ ሻߙሺߩ  െ sgnሺߙሶ ሻሾ݂ߪ௤ ൅ ݇ሺߙሻሿ

η
 (12)

Equations (7) and (12) together define the constitutive response of the material in 
incremental form.   

Since from (11), sgnሺߙሶ ሻ is equivalent to sgn൫ߪ െ  ሻ൯ for inelastic processes.  Theߙሺߩ 
evolution equation for ߙሶ  in (12) can be more conveniently expressed as: 



ሶߙ ൌ
ߪ െ ሻߙሺߩ  െ sgn൫ߪ െ ௤ߪሻ൯ሾ݂ߙሺߩ ൅ ݇ሺߙሻሿ

η
 

sgnሺߙሶ ሻ ൌ sgn൫ߪ െ  ሻ൯ߙሺߩ

(13)

Conditions for which the two equations cannot be simultaneously satisfied imply elastic 
loading is taking place. 

RESULTS AND DISCUSSION 

In this section, the proposed thermomechanical model is implemented in a simple 
compaction simulation to reproduce the features observed in typical experiments on 
fibrous materials.  Trends associated with changes in compaction speed and the cyclic 
evolution in maximum compaction stress and residual inelastic deformation are 
reproduced using the model. 

Single Cycle 
In the experiments by Somashekar [21], square 200mm by 200mm Continuous Filament 
Random Mat (CFRM), Plain Weave Fabric (PWF) and Biaxial Stitched Fabric (BSF) 
glass reinforcement specimens were loaded to a target volume fraction, held, then 
quickly released.   

Table 1: Single cycle compaction experiment details [18] 

CFRM Compaction speed 
(mm/min) Sample layers 

Strain hold time 
(min) 

Target final / initial vf 

0.40 / 0.05 1 10 10 
0.40 / 0.05 5 10 10 
0.40 / 0.05 25 10 10 

The normalised peak compaction stresses and inelastic deformation recorded for the 
experiments [21] are compared with output from the thermomechanical model in Figure 
1.  Table 2 shows the parameters used in the model. 
 
a)      b) 

 
Figure 1: Single cycle compaction 

a) Normalised Peak Compaction Stress vs. Compaction Speed, and b)   
Inelastic deformation 25 minutes after load cycle vs. Compaction Speed 
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Table 2: Model Parameters 

Ψଵ 
E 2.00e4
m 8

Ψଶ 
H E/10
p 5

Φଵ 
f 0.1
q 1.5

݇ሺߙሻ 0.1 ߙ
Φଶ  η 100000

 
As shown in the Figure 1, the model exhibits the same rate-dependent trends as 
observed in experiments, suggesting the validity of the underlying physical processes 
proposed.  As compaction speed is increased, there is less time within which the time-
dependent process of fibre rearrangement within the tows may occur.  Consequently, the 
extent to which fibre slippage may occur is reduced. Due to reduced settlement of the 
material, the elastic strain to which the material is subjected is increased, leading to an 
increased Peak Compaction Stress. 

The frictional resistance to slippage is a non-linear function of the applied stress 
implying the existence of a fibre bound state, wherein the material can no longer deform 
inelastically due to the frictional dissipative stress ߯ଵ exceeding the applied stress.   

From Figure 1b it is evident that the model underestimates the extent of inelastic 
deformation 25 minutes after the loading cycle.  This result is characteristic of the 
model, which predicts an eventual steady-state value of the inelastic deformation which 
is somewhat independent of the loading history.  Indeed, as long as the inelastic strain 
has at some point in the loading history exceeded a critical value determined by the 
fibre withdrawal stress function ݇ሺߙሻ , the true permanent deformation predicted by the 
model will tend towards a single, history-independent value.  Despite this 
predisposition, the slight trend exhibited in Figure 1b can be produced through the use 
of a high viscosity parameter, corresponding to a high reluctance for the fibres within 
the tow to rearrange and slowing the reversal of inelastic strain through fibre slippage.  
Thus, the model exhibits greater correlation to the experimentally observed post-loading 
inelastic strain for shorter time scales.   

Multiple Cycles 
In more experiments by Somashekar [21], samples of the same size as used for the 
single cycle experiments were loaded using the same crosshead speed during loading 
and unloading.  20 loading and unloading cycles were carried out – experiment details 
are shown in Table 3.  Other experiments were carried out at the Centre for Advanced 
Composite Materials (CACM), Auckland, where Chopped Strand Mat was compacted 
at a speed of 0.05mm/min to a final volume fraction of 0.425.  Figure 3 provides a 
comparison between experimental data and the model output for the first cycle, and 
illustrates the cyclic softening behaviour which is characteristic of the model. 

Table 3:  Multiple cycle compaction experiment details 

CFRM Compaction speed 
(mm/min) Strain hold time (min) 

Sample recovery time after 
each compaction and 

release (min 
Target final / initial vf 

0.40 / 0.05 1 10 5 



 

Figure 2: Multiple Cycle Compaction - Inelastic Deformation following each cycle and 
Normalised Peak Compaction Stress vs. Cycle Number 

 
Figure 3:  Chopped Strand Mat single cycle experimental data and Model cyclic data – 

Normalised stress vs. Volume Fraction 
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shows agreement with the experimentally observed trend.  The decay in stress is 
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consistent with the evolution in inelastic strain, in effect reducing the elastic strain 
applied to the material. 

Also in Figure 2, the inelastic deformation predicted by the model is noticeably lower 
than that observed in experiments.  Although the model parameters may be chosen such 
that this disparity is reduced, it is difficult not to induce other undesirable behaviour, 
such as excessive stress relaxation, at the same time.   

The difficulty in prescribing parameters which allow the model to match the inelastic 
strain and relaxation behaviour simultaneously lies within the use of a single internal 
variable, which implies a strong relationship between the physical processes which 
occur at the intra-tow and inter-tow scales.  In reality, these physical processes are 
distinct, and so would be better described through the use of separate internal variables. 

The performance of the model hence illustrates the limitations associated with the use of 
a single internal variable.  Although using a single internal variable keeps the model 
simple, it is not possible to incorporate an explicit distinction between inelastic fibre 
slippage and the degree to which intra-tow rearrangement has occurred.  This distinction 
is crucial to an accurate description of fibrous materials, as it allows one to have two 
samples of the same material having the same inelastic strain, but in different states, due 
to unique loading histories.   

Figure 3 shows experimental data for a single load-unload cycle of a Chopped Strand 
Mat sample, with model data for cyclic loading overlaid.  The model shows general 
agreement with the experimental data for the first cycle, and the curves for cycles 2 and 
10 demonstrate the cyclic softening towards a state of repeatable behaviour that is 
expected of fibrous materials.  A more detailed experimental regime is required in order 
to make more meaningful comparisons between experiments and the model.   

CONCLUSIONS 
A thermomechanical model for fibrous materials has been presented.  Micro-scale 
processes of energy storage, by bending of fibres and locking of fibres into bent 
configurations, and energy dissipation, by fibre slippage and fibre rearrangement within 
the tow, are represented within the chosen forms of the free energy and dissipation 
functions.  The model has been compared to experimental data for single and multiple 
cycles of loading.  In both instances, the model reproduced the same trends as those 
observed in the experiments.  Suggested improvements to the model include the 
introduction of an additional internal variable, enabling the physical processes occurring 
at the inter-tow and intra-tow scales to be treated separately. 
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