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SUMMARY

The finite elements presented in this paper fotileexabric forming are composed of
woven unit cells. The mechanical behaviour of thesmalyzed by 3D computations at
the mesoscale regarding biaxial tensions, in p&ear and bending properties. These
elements are efficient because they are closedhysics of the woven cell while
avoiding the very large number of unknowns in thecmte approach. Forming
simulations on single ply, multi-ply and 3D intestlowill be presented and show the
efficiency of the approach. In particular the impoce of the in-plane shear and
bending behaviour will be emphasized.

Keywords: Composite Forming; forming/draping simulations, textile composite, meso-
macro

INTRODUCTION

To accurately perform mechanical analyses of coftgesaterials, it is necessary to
know the direction and the density of the fibresaaly point on the part. These
directions are mainly dependent on the forming led tomposite. Woven textile

reinforcements can reach very large in-plane skgam during manufacturing when
the final shape is double curved. A numerical thait simulates this forming process
determines not only the conditions of the feadibihf a process without defect but also
the directions of the reinforcements after shapilmg.addition to the mechanical

behaviour of the final solid composite, the angletween warp and weft yarns
influence the permeability of the reinforcement dhds the filling of the resin in the

case of a liquid moulding process [1].

To simulate draping of textile composite reinforest) several packages are
commercially available based on “kinematical motg$ This method is very fast but
does not account for the mechanical behaviour @fatbven reinforcement for possible
sliding of the fabric in relation to the tools afat load boundary conditions. These
points are very important in the case of forminghwpunch and die (such as in the
preforming of the R.T.M. process). A complete phgkisimulation of a composite
forming process needs a model of the mechanicavelr woven reinforcement and
usually a numerical method, for instance, the diretement method. The mechanical
behaviour of fabrics is complex due to the intcaiteractions of the yarns. It is a
multi-scale problem. The macroscopic behavioureis/\dependent on the interactions
of yarns at the meso-scale (scale of the wovenaatiX and at the micro-scale (level of
the fibres constituting yarns). Despite the manyksan the field, there is no widely



accepted model that accurately describes all the @spects of a fabric mechanical
behaviour. A first family of models considers tlabdrfic as an anisotropic continuum [3-
6], the mechanical behaviour of which has to take iaccount the influence of the
underlying meso-structure. While these models @rdsily integrated in F.E. standard
shell or membrane elements, the identification @ibgenized material parameters is
difficult, especially because these parametersgavhen the fabric is subjected to the
large strains due to forming. At the opposite, s@uthors present discrete models of
fabrics based on modelling of the woven yarns ugulgscribed by simplified elements
such as beams and springs [7-8]. A major difficlikg in the very large number of
components at mesoscale and the very large nunflEmtacts with friction between
them.

This paper is based on the semi-discrete apprddci$ in the discrete approach, the
components at the mesoscale are considered (yarmgven cells). But in the case of
the semi-discrete approach, they are part of felgenents and their strains are given by
the node displacements. The corresponding strarggns computed from mechanical
behaviour obtained from experimental tests thatspecific to the textile composite
reinforcements. By considering the behaviour of wleeen unit cell, the semi-discrete
approach allows only the significant mechanicalperties of the element at mesoscale
to be taken into account. This leads to numeriagificient elements. The difficulty of
determining the equivalent continuous mechanichbb®ur for the fiborous material at
large strains is avoided on one hand and on ther didind the number of unknowns is
greatly reduced in comparison to the discrete agires.

The bending stiffness of textile reinforcement erywsmall due to its fibrous nature
Nevertheless this second order rigidity can be mamb in some cases especially when
some wrinkles appear. This paper presents a deelleat composed of woven cells and
rotational-free i.e. with only displacements nodariables [10]. A set of example
including draping and forming simulations are présd in order to show the efficiency
of the proposed shell element and to highlight itifuence and importance of the
tensile, in plane shear and bending rigidities.

THE SEMI-DISCRETE APPROACH FOR TEXTILE
COMPOSITE REINFORCEMENT

The textile material results from the assembly @ftmuous fibres with a very small

diameter. It exhibits a very specific mechanicahdaour since relative motions are
possible between the yarns and the fibres. In LOMcgsses (Liquid Composite

Moulding), the textile reinforcement pre-formingagé takes advantage of these
possible motions. The forming is made on dry reitément (i.e. without resin) since it

is performed before the injection stage.

In the present work the approach is called senuréis. The textile composite
reinforcement is seen as a set of a discrete nuwibenit woven cells submitted to
membrane (i.e. biaxial tension and in-plane shaaal)bending (Figure 1).

In any virtual displacement field such asy = 0 on the boundary with prescribed
loads, the virtual work theorem relates the intereaterior and acceleration virtual
works:



W, (1) =W, (n) =W, (n) with W, (n) =W, (n) + W, (n) + W (n) (1)

Figure 1. Unit woven cell submitted to tensionplane shear and bending

Wi, (n) , Wi, (n) , WP (n) are the internal virtual works of biaxial tensiamplane shear
and bending respectively with :
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where ncell is the number of woven cell. dnd L, are the length of unit woven cell in
warp and weft directions, (n) andg,, (n) are the virtual axial strain in the warp and

weft directions.y(n) is the virtual angle between warp and weft dimewi x,, (n) and
X2 (n) are the virtual curvatures of warp and weft died. €, (n), €,(n), y(n),
X (N) andx,, (n) are function of the gradient of the virtual disglaent field. t and

T22 are the tensions on the unit woven cell in wamp aeft directions. M* and M? are
the bending moments on the woven cell respectivelyarp and weft directions. Ms
the in-plane shear moment. The mechanical behawbuhe textile reinforcement
defines a relation between the loads, TM®, M“® and the strain field. Experimental
tests specific to textile composite reinforcemeans used to obtain these mechanical
properties. The biaxial tensile test gives the tmsiT* and T2 in function of the axial
strain €;; and €5, [11], the picture frame or the bias extension @ises the shear
moment M in function of the angle changebetween warp and weft yarns [12] and the
bending test give the bending momentS'and M2 in function respectively af;1 and



X22 [13]. An alternative consists in virtual tests i.e. [d 8imulations of the deformation
of a unit woven cell submitted to elementary logdirsuch as biaxial tensions or in
plane shear [14] (Figure 2).
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Figure 2. Shear of woven fabric: (a) Mesoscopic Ralysis: deformed unit cell (b)
Experimental and numerical shear curve

The tensions * and 72 simultaneously depend on the warp and weft stfaéesuse
of the weaving i.e., they are in the form'(Eys, €2), T?(€11, £22). The in-plane shear
moment is assumed to depend only on the shear aagh® (y). Bending moments are
supposed to be in the form*ix11) and M4x22). The above forms of the load§°T
M®, M®® in function of the strains in the unit woven cale used because they account
for the main phenomena, because other data ardyusaotiavailable and also in order
to keep the approach simple enough. Some studie® Ishown that these
simplifications can be questionable in some cadé$ [Nevertheless it is possible to
extend the approach to the cases where each fadf, M*® depends on more strain
components.

Triangular element made of woven cells

The three node triangle shown figure 3 is compogattelle woven cells. The natural
material coordinate&', £2 are defined along the sides of the element. Theselnates
have the following values at the nodes of the gian M;(0,0), Mx(1,0), M3(0,1). The
displacement @&nd the position »f a point P within the element are interpolatexhf
the values at node:

uP)=Y NuM)  x(P)=> Nx(M) (5)

With N;=1-&-¢2 N, =&t Nj = &3 (6)

The material coordinates, r* are defined along the warp and weft directiorguié 3).
r! is equal to zero on W5 and is equal to 1 in MF is equal to zero on MW, and
equalto 1 in M.

The material vectors;kk, are defined from'r r*:

0x _9x

_1:6_r_1 L and consequently _&%®AM, k=BMj3; (7)



Figure 3. Three node finite element made of wowals c

Nodal membraneinternal loads
The virtual displacement gradient can be express#te warp and weft frame (figure 3):
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Consequently the elementary tensile virtual work lsa written :
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The elementary nodal tensile interior loads areerdeined. Because of the linear
interpolation, the strain interpolation termgjBare very simple and constant in the
element. The strains and consequently the tensawasconstant in the element,
consequently:

L, L,
Fu), = ncellg B; T =+ B; T (11)
%), { k.| T}

The angle variation between warp and weft diregtiorthe virtual field virtualy(n) is
given by the gradient of the virtual displacement:

y(n) =(Ond, )@ +(0On@, )@’ (12)
with

ko koK K

B R “



The expression of the components of the virtuapldisement gradient (8) gives the
interpolation of the virtual angle variatior(r]) :

=l LY hee ”
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with:
Bair = (b-1)ki; Bsiz = -bkii  Baiz = ki
Bai1 = (a-1)ki Baiz = kai Baiz = -akoi (15)

B,i1, isconstant in the three node finite element, theeefor

(F,f]‘f) = ncelleB,;M(y) (16)

Figure 4. Triangular element and its 3 neighbours

In order to avoid to add supplementary degreesreédom and consequently for

numerical efficiency, the bending stiffness is taketo account within an approach

without rotational degree of freedom [10]. In thesgpproaches the curvatures of the
element are computed from the positions and displ@nts of the neighbouring nodes
elements (Figure 4). The details of the formulatocam be found in [16]. It gives the

interpolations of the curvatures in warp and wéakctions are now defined:

Xaa (n) = Bbakmnkm (17)

m= 1 to 6 (index of the node), k = 1 to 3 (indexdokction of the displacement).
The nodal bending interior load components are:
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(18)

(Figte)km = ncelle[ Bblkm Mll

FORMING SIMULATIONS
Draping on a cylinder of revolution

(a) (b)

(c)
Figure 5. Draping on a circular cylinder

An initially flat square fabric is draped on a cyer (figure 5). Four different
mechanical behaviour models are considered: tessffaess only (Figure 5a), tensile
and in-plane shear stiffness (Figure 5b), tensilgglane shear and bending stiffness
(Figure 5c). The deformed shape obtained when tengile stiffness is taken into
account involves very large shear angle in the exsrrof the fabric but no wrinkle.
Wrinkles appear when in-plane shear stiffnesskisrtanto account and shear angles are
limited (Figure 5b). The size of the wrinkles iggar and more realistic when the
bending stiffness of the fabric is taken into acdo(Figure 5c). In Figure 5d, an
isotropic behaviour is used for the sheet. Foraimsg it could be a paper sheet. The
draping is not possible. The required large sheglea in the corners are not allowed by
this behaviour for which the in-plane shear behawie related to the tensile one. That
shows the very important role of the in-plane sheslmaviour in draping/forming of

(d)



membrane. A textile can be shaped on a double dusuface because there are
possible large rotations between warp and weft syanmd in-plane shear stiffness is
weak. In the case of an isotropic membrane thabigpossible. On the other hand the
shear stiffness that increases when the shear aegtames large leads to wrinkles. If
this shear stiffness is neglected there will bevniokle in any case.

Very unbalanced fabric forming

The hemispherical forming of a 2x2 nylon twill isadysed (figure 6). This fabric is
used in automotive industry. It presents a veryalanced tensile behaviour in warp and
weft direction. The warp rigidity is 50 N/yarn atite weft rigidity is 0.2 N/yarn. The
shear behaviour of this fabric has been analysettidopicture frame test. Experimental
tests of the hemispheric sheet forming have bebieaed in the composites laboratory
of the University of Nottingham. The blank holdsera 6 kg ring submitted to its own
weight. The final shape obtained after forming &ywasymmetrical. There is a large
axial strain in the weft direction (horizontal) aledge displacements with very small
axial strain in the warp direction (vertical). THisal shape is well obtained by the
simulation. The ratio of the lengths after deforim@tyern/lwarp IS €qual at the top of the
hemisphere to 1.8 in experiments and in simulasisrwell. There are many wrinkles,
especially along the vertical axis. They are fawill obtained by the simulation.

Figure 6. Hemispherical forming of an unbalancdatita
Simulation (right) and experiment (left)

CONCLUSIONS

The semi-discrete finite element described in gaper is an alternative to continuous
and discrete approach for textile composite reagdorent forming. The virtual work of
internal loads is composed of a tensile part, aplame shear part and a bending part.
The tensions, shear and bending moments includetthannodal internal loads are
directly those that are measured by the specifpesmental tests that are used for
characterising textile composite reinforcements.



The proposed finite element is numerically effitidmecause only the significant
guantities are computed in these internal loadsadswlbecause the element is rotational
free. It has been shown that the in-plane sheffinesis is of main important for wrinkle
appearance and that bending stiffness determinghigee of those wrinkles.
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