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SUMMARY 

The finite elements presented in this paper for textile fabric forming are composed of 
woven unit cells. The mechanical behaviour of these is analyzed by 3D computations at 
the mesoscale regarding biaxial tensions, in plane shear and bending properties. These 
elements are efficient because they are close to the physics of the woven cell while 
avoiding the very large number of unknowns in the discrete approach. Forming 
simulations on single ply, multi-ply and 3D interlock will be presented and show the 
efficiency of the approach. In particular the importance of the in-plane shear and 
bending behaviour will be emphasized. 
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INTRODUCTION 

To accurately perform mechanical analyses of composite materials, it is necessary to 
know the direction and the density of the fibres at any point on the part. These 
directions are mainly dependent on the forming of the composite. Woven textile 
reinforcements can reach very large in-plane shear strain during manufacturing when 
the final shape is double curved. A numerical tool that simulates this forming process 
determines not only the conditions of the feasibility of a process without defect but also 
the directions of the reinforcements after shaping. In addition to the mechanical 
behaviour of the final solid composite, the angles between warp and weft yarns 
influence the permeability of the reinforcement and thus the filling of the resin in the 
case of a liquid moulding process [1]. 

To simulate draping of textile composite reinforcement, several packages are 
commercially available based on “kinematical models” [2]. This method is very fast but 
does not account for the mechanical behaviour of the woven reinforcement for possible 
sliding of the fabric in relation to the tools and for load boundary conditions. These 
points are very important in the case of forming with punch and die (such as in the 
preforming of the R.T.M. process). A complete physical simulation of a composite 
forming process needs a model of the mechanical behaviour woven reinforcement and 
usually a numerical method, for instance, the finite element method. The mechanical 
behaviour of fabrics is complex due to the intricate interactions of the yarns. It is a 
multi-scale problem. The macroscopic behaviour is very dependent on the interactions 
of yarns at the meso-scale (scale of the woven unit cell) and at the micro-scale (level of 
the fibres constituting yarns). Despite the many works in the field, there is no widely 



accepted model that accurately describes all the main aspects of a fabric mechanical 
behaviour. A first family of models considers the fabric as an anisotropic continuum [3-
6], the mechanical behaviour of which has to take into account the influence of the 
underlying meso-structure. While these models can be easily integrated in F.E. standard 
shell or membrane elements, the identification of homogenized material parameters is 
difficult, especially because these parameters change when the fabric is subjected to the 
large strains due to forming. At the opposite, some authors present discrete models of 
fabrics based on modelling of the woven yarns usually described by simplified elements 
such as beams and springs [7-8]. A major difficulty lies in the very large number of 
components at mesoscale and the very large number of contacts with friction between 
them. 

This paper is based on the semi-discrete approach [9]. As in the discrete approach, the 
components at the mesoscale are considered (yarns, or woven cells). But in the case of 
the semi-discrete approach, they are part of finite elements and their strains are given by 
the node displacements. The corresponding strain energy is computed from mechanical 
behaviour obtained from experimental tests that are specific to the textile composite 
reinforcements. By considering the behaviour of the woven unit cell, the semi-discrete 
approach allows only the significant mechanical properties of the element at mesoscale 
to be taken into account. This leads to numerically efficient elements. The difficulty of 
determining the equivalent continuous mechanical behaviour for the fibrous material at 
large strains is avoided on one hand and on the other hand the number of unknowns is 
greatly reduced in comparison to the discrete approaches.  

The bending stiffness of textile reinforcement is very small due to its fibrous nature 
Nevertheless this second order rigidity can be important in some cases especially when 
some wrinkles appear. This paper presents a shell element composed of woven cells and 
rotational-free i.e. with only displacements nodal variables [10]. A set of example 
including draping and forming simulations are presented in order to show the efficiency 
of the proposed shell element and to highlight the influence and importance of the 
tensile, in plane shear and bending rigidities. 

 

THE SEMI-DISCRETE APPROACH FOR TEXTILE  

COMPOSITE REINFORCEMENT 

The textile material results from the assembly of continuous fibres with a very small 
diameter. It exhibits a very specific mechanical behaviour since relative motions are 
possible between the yarns and the fibres. In LCM processes (Liquid Composite 
Moulding), the textile reinforcement pre-forming stage takes advantage of these 
possible motions. The forming is made on dry reinforcement (i.e. without resin) since it 
is performed before the injection stage. 

In the present work the approach is called semi-discrete. The textile composite 
reinforcement is seen as a set of a discrete number of unit woven cells submitted to 
membrane (i.e. biaxial tension and in-plane shear) and bending (Figure 1).  

In any virtual displacement field η such as η = 0 on the boundary with prescribed 
loads, the virtual work theorem relates the internal, exterior and acceleration virtual 
works: 
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Figure 1.  Unit woven cell submitted to tension, in-plane shear and bending 
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where ncell is the number of woven cell. L1 and L2 are the length of unit woven cell in 
warp and weft directions. ( )11 ε η  and ( )22 ε η  are the virtual axial strain in the warp and 

weft directions. ( )γ η  is the virtual angle between warp and weft directions. ( )11 χ η  and 

( )22 χ η  are the virtual curvatures of warp and weft directions. ( )11 ε η , ( )22 ε η , ( )γ η , 

( )11 χ η  and ( )22 χ η are function of the gradient of the virtual displacement field. T11 and 

T22 are the tensions on the unit woven cell in warp and weft directions. M11 and M22 are 
the bending moments on the woven cell respectively in warp and weft directions. Ms is 
the in-plane shear moment. The mechanical behaviour of the textile reinforcement 
defines a relation between the loads Tαα, Ms, Mαα and the strain field. Experimental 
tests specific to textile composite reinforcements are used to obtain these mechanical 
properties. The biaxial tensile test gives the tensions T11 and T22 in function of the axial 
strain ε11 and ε22 [11], the picture frame or the bias extension test gives the shear 
moment Ms in function of the angle change γ between warp and weft yarns [12] and the 
bending test give the bending moments M11and M22 in function respectively of χ11 and 



χ22 [13]. An alternative consists in virtual tests i.e. in 3D simulations of the deformation 
of a unit woven cell submitted to elementary loadings such as biaxial tensions or in 
plane shear [14] (Figure 2). 

a 

 

b  

Figure 2. Shear of woven fabric: (a) Mesoscopic F.E. analysis: deformed unit cell (b) 
Experimental and numerical shear curve 

The tensions T11 and T22 simultaneously depend on the warp and weft strains because 
of the weaving i.e., they are in the form T11(ε11, ε22), T

22(ε11, ε22). The in-plane shear 
moment is assumed to depend only on the shear angle i.e. Ms (γ). Bending moments are 
supposed to be in the form M11(χ11) and M22(χ22). The above forms of the loads Tαα, 
Ms, Mαα in function of the strains in the unit woven cell are used because they account 
for the main phenomena, because other data are usually not available and also in order 
to keep the approach simple enough. Some studies have shown that these 
simplifications can be questionable in some cases [15]. Nevertheless it is possible to 
extend the approach to the cases where each load Tαα, Ms, Mαα depends on more strain 
components.  

Triangular element made of woven cells 

The three node triangle shown figure 3 is composed of ncelle woven cells. The natural 
material coordinates ξ1, ξ2 are defined along the sides of the element. These coordinates 
have the following values at the nodes of the triangle : M1(0,0), M2(1,0), M3(0,1). The 
displacement u and the position x of a point P within the element are interpolated from 
the values at node: 
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With  N1= 1 - ξ1 - ξ2  N2 = ξ1 N3 = ξ3    (6) 

The material coordinates r1, r2 are defined along the warp and weft directions (figure 3). 
r1 is equal to zero on M1M3 and is equal to 1 in M2. r

2 is equal to zero on M1M2 and 
equal to 1 in M3. 

The material vectors k1, k2 are defined from r1, r2: 
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Figure 3. Three node finite element made of woven cells 
 

Nodal membrane internal loads 

The virtual displacement gradient can be expressed in the warp and weft frame (figure 3): 
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Consequently the elementary tensile virtual work can be written : 
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with  
B1i1 = (a-1)k1i    B1i2 = k1i B1i3 = -ak1i  

B2i1 = (b-1)k2i      B2i2 = -bk2i B2i3 = k2i                (10) 
 
The elementary nodal tensile interior loads are determined. Because of the linear 
interpolation, the strain interpolation terms Bαij are very simple and constant in the 
element. The strains and consequently the tensions are constant in the element, 
consequently: 
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The angle variation between warp and weft directions in the virtual field virtual ( )γ η is 

given by the gradient of the virtual displacement: 
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The expression of the components of the virtual displacement gradient (8) gives the 

interpolation of the virtual angle variation ( )γ η : 
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with: 
 B3i1 = (b-1)k1i B3i2 = -bk1i B3i3 = k1i  
 B4i1 = (a-1)k2i B4i2 = k2i B4i3 = -ak2i         (15) 
 
Bγi1, is constant in the three node finite element, therefore  
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Figure 4. Triangular element and its 3 neighbours 
 

In order to avoid to add supplementary degrees of freedom and consequently for 
numerical efficiency, the bending stiffness is taken into account within an approach 
without rotational degree of freedom [10]. In theses approaches the curvatures of the 
element are computed from the positions and displacements of the neighbouring nodes 
elements (Figure 4). The details of the formulation can be found in [16]. It gives the 
interpolations of the curvatures in warp and weft directions are now defined: 
 

km km( ) Bbαα αχ η = η         (17) 
 
m= 1 to 6 (index of the node), k = 1 to 3 (index of direction of the displacement). 
The nodal bending interior load components are: 
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FORMING SIMULATIONS 

Draping on a cylinder of revolution  

 

 

Figure 5. Draping on a circular cylinder 

An initially flat square fabric is draped on a cylinder (figure 5). Four different 
mechanical behaviour models are considered: tensile stiffness only (Figure 5a), tensile 
and in-plane shear stiffness (Figure 5b), tensile, in-plane shear and bending stiffness 
(Figure 5c). The deformed shape obtained when only tensile stiffness is taken into 
account involves very large shear angle in the corners of the fabric but no wrinkle. 
Wrinkles appear when in-plane shear stiffness is taken into account and shear angles are 
limited (Figure 5b). The size of the wrinkles is larger and more realistic when the 
bending stiffness of the fabric is taken into account (Figure 5c). In Figure 5d, an 
isotropic behaviour is used for the sheet. For instance it could be a paper sheet. The 
draping is not possible. The required large shear angles in the corners are not allowed by 
this behaviour for which the in-plane shear behaviour is related to the tensile one. That 
shows the very important role of the in-plane shear behaviour in draping/forming of 



membrane. A textile can be shaped on a double curved surface because there are 
possible large rotations between warp and weft yarns and in-plane shear stiffness is 
weak. In the case of an isotropic membrane that is not possible. On the other hand the 
shear stiffness that increases when the shear angle becomes large leads to wrinkles. If 
this shear stiffness is neglected there will be no wrinkle in any case. 

 
Very unbalanced fabric forming 

The hemispherical forming of a 2x2 nylon twill is analysed (figure 6). This fabric is 
used in automotive industry. It presents a very unbalanced tensile behaviour in warp and 
weft direction. The warp rigidity is 50 N/yarn and the weft rigidity is 0.2 N/yarn. The 
shear behaviour of this fabric has been analysed by the picture frame test. Experimental 
tests of the hemispheric sheet forming have been achieved in the composites laboratory 
of the University of Nottingham. The blank holder is a 6 kg ring submitted to its own 
weight. The final shape obtained after forming is very asymmetrical. There is a large 
axial strain in the weft direction (horizontal) and large displacements with very small 
axial strain in the warp direction (vertical). This final shape is well obtained by the 
simulation. The ratio of the lengths after deformation lweft/lwarp is equal at the top of the 
hemisphere to 1.8 in experiments and in simulation as well. There are many wrinkles, 
especially along the vertical axis. They are fairly well obtained by the simulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Hemispherical forming of an unbalanced fabric.  

Simulation (right) and experiment (left) 

 

CONCLUSIONS 

The semi-discrete finite element described in this paper is an alternative to continuous 
and discrete approach for textile composite reinforcement forming. The virtual work of 
internal loads is composed of a tensile part, an in plane shear part and a bending part. 
The tensions, shear and bending moments included in the nodal internal loads are 
directly those that are measured by the specific experimental tests that are used for 
characterising textile composite reinforcements.  



The proposed finite element is numerically efficient because only the significant 
quantities are computed in these internal loads and also because the element is rotational 
free. It has been shown that the in-plane shear stiffness is of main important for wrinkle 
appearance and that bending stiffness determine the shape of those wrinkles. 
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