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Abstract  

In this paper, the thermal fracture behavior for 
a crack perpendicular to the interface in a 
functionally graded layered structure (FGLS) with a 
functionally graded interfacial layer is investigated. 
The plane strain state is considered. During the 
analytical procedure, integral transform methods 
are used to obtain the displacement and stress 
expressions. Then, by introducing an auxiliary 
function and using the residue theory and the 
singular integral equation method, the thermal 
stress intensity factor (TSIF) is calculated. 
Particularly, a crack intersecting the interface is 
considered. Some representative structure with 
different nonhomogeneity material properties and 
geometric parameters are analyzed and the 
corresponding TSIF is presented. The influences of 
the nonhomogeneity constants and the geometry 
parameters on the TSIFs are analyzed. 
 
 
1 Introduction  

Functionally graded materials (FGMs) belong 
to composite materials with the material properties 
varying continuously from place to place according 
to the performance requirements. Functionally 
graded layered structures (FGLSs) have great 
potential in thermal gradient structures and 
metal/ceramic joining. In the FGLSs, the material 
properties vary from one layer to another layer in a 
continuous manner. Therefore, the mismatch of 
material properties between different layers, which 
may involve the high residual and thermal stresses 
and result in the cracking, can be eliminated. In the 
past decades, FGLSs, such as the functionally 
graded ceramic coating/metal substrate system, 
have absorbed great attention. In the field of 
fracture mechanics, most of the past investigations 
are concentrated on the structures with a crack 

located on the interface or in one functionally 
graded layer [1-5]. However, few investigations 
have been carried out on the crack intersecting the 
interface in the functionally graded structures.  

In this paper, the thermal fracture behaviors for 
a crack intersecting the interface in a FGLS are 
analyzed. The plane strain state is considered. 
During the analytical procedure, integral transform 
methods are used to obtain the displacement and 
stress expressions. Then, by introducing an 
auxiliary function and using the residue theory and 
the singular integral equation method, the present 
problem is reduced to a singular integral equation 
which can be solved through numerical methods. 

2 Formulation of the Problem 

The functionally graded layered structure is 
shown in Fig. 1. Layer 1 and Layer 3 are both 
homogeneous layers with the thicknesses 1h  and 3h . 
Layer 2 is a functionally graded interfacial layer 
with the thickness 2h . Assume h = 1 2 3h h h+ + , 

jμ , jλ  and jα  ( 1,2,3j = ) are the shear moduli, 
the coefficients of heat conduction and the thermal 
expansion coefficients of three layers, respectively. 
The surface temperatures are 01T  and 02T . The 
initial temperature is assumed as 0T . The material 
properties are continuous across the interface. First, 
we define the shear modulus, the coefficient of heat 
conduction and the thermal expansion coefficient 
of the functionally graded interfacial layer as 

2 02( ) xx eδμ μ=  (1)

2 02( ) xx eηλ λ=  (2)

2 02( ) xx eωα α=  (3)
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According to the continuity of the material 
properties, we have the properties of the other two 
layers 

1
1 2 1 02( ) hh eδμ μ μ= =  (4)

1
1 2 1 02( ) hh eηλ λ λ= =  (5)

1
1 2 1 02( ) hh eωα α α= =  (6)

1 2( )
3 2 1 2 02( ) h hh h eδμ μ μ += + =  (7)

1 2( )
3 2 1 2 02( ) h hh h eηλ λ λ += + =  (8)

1 2( )
3 2 1 2 02( ) h hh h eωα α α += + =  (9)

where 02μ , 02α , 02λ , δ , ω and η  are material 
constants. 

If the thermo-elastic coupling effects are 
negligible, the crack problem can be solved by 
superposition. As Erdogan and Wu [2] have done, 
the present crack problem can be reduced to a 
perturbation problem and the crack surface loads 
resulted from the temperature distribution will be 
equal and opposite to the thermal stresses in the 
absence of the crack. Therefore, for the structure in 
Fig.1, the temperature distribution and thermal 
stresses will be firstly obtained in the absence of 
the crack.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Functionally graded layered structure with a 
crack intersecting the interface 

The steady state equation can be written as 

[ ( ) ( ) / ] / 0j jx T x x xλ∂ ∂ ∂ ∂ = , 
( 1, 2,3)j =  

(10)

Using the thermal boundary and continuity 
conditions, 

1 01( 0)T x T= =  (11)

3 02( )T x h T= =  (12)

1 1 2 1( ) ( )T x h T x h= = =  (13)

 2 1 2 3 1 2( ) ( )T x h h T x h h= + = = +        (14)

1 1
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1 2
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x h x h

T x T x
x x

λ λ
= =

∂ ∂
=

∂ ∂
 (15)
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∂ ∂
    (16)

the temperature fields for the three layers can be 
obtained as 

02 01
1 01 0

1 2 3 1

( )( )
( )

xT T dxT x T
w w w xλ

−
= +

+ + ∫  (17)

1

02 1 01 2 3
2

1 2 3

02 01

1 2 3 2

( )( )

( )
( )

x

h

T w T w wT x
w w w

T T dx
w w w xλ

+ +
=

+ +

−
+

+ + ∫
 (18)

1 2

02 1 2 01 3
3

1 2 3

02 01

1 2 3 3

( )( )

( )
( )

x

h h

T w w T wT x
w w w

T T dx
w w w xλ+

+ +
=

+ +

−
+

+ + ∫
 (19)

where 1w , 2w  and 3w  are known constants.  

Then, the thermal stress distribution in the 
absence of the crack can be solved. For plane strain 
state, we have  

2

0

( )
( ) {

1

( )(1 )[ ( ) ]}

jT
jyy j j

j

j j j

E x
x A x B

x T x T

σ
ν

α ν

= +
−

− + −

, 

( 1, 2,3)j =  

(20)

where, jA and jB  ( 1, 2,3)j =  are coefficients 
which can be determined from the displacement and 
stress boundary and continuity conditions of the 
structure. If the structure is only subjected to the 
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temperature distribution without constraining along 
its boundaries, the resultant force and moment in the 
structure are zero. Namely, 

1 1 2
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1 20
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1 20
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∫ ∫

∫

∫ ∫

∫

      (21)

Together with the continuity conditions of stresses 
and displacements, the unknowns jA and jB  
( 1, 2,3)j =  can be determined. According to the 
above description, in the following crack analysis, 

( )T
jyy xσ−  ( 1, 2,3j = ) will be used as the crack 

surface traction.  
In the following analysis regarding the crack, 

the boundary and continuity conditions can be 
written as 

1 (0, ) 0xx yσ =  (22)

0),0(1 =yxyσ  (23)

1 1 2 1( , ) ( , )xx xxh y h yσ σ=  (24)

1 1 2 1( , ) ( , )xy xyh y h yσ σ=               (25)

2 1 2 3 1 2( , ) ( , )xx xxh h y h h yσ σ+ = +  (26)

2 1 2 3 1 2( , ) ( , )xy xyh h y h h yσ σ+ = +       (27)

1 1 2 1( , ) ( , )v h y v h y=  (28)

1 1 2 1( , ) ( , )u h y u h y=  (29)

2 1 2 3 1 2( , ) ( , )v h h y v h h y+ = +  (30)

2 1 2 3 1 2( , ) ( , )u h h y u h h y+ = +  (31)

2 ( , ) 0xx h yσ =  (32) 

2 ( , ) 0xy h yσ =  (33)

1 2 3( ,0) ( ,0) ( ,0) 0v x v x v x= = = ,     
( , )x a b∉  

(34)

1 2( ,0) ( ,0) 0xy xyx xσ σ= =  (35)

( ,0) ( )T
jyy jyyx xσ σ= − ,  a x b< <  (36)

In the condition (36), j  ( 1, 2,3= ) corresponds 
to the layer in which x lies. 

The constitutive equations  can be written as 

( ) ( )

( ) ( )

1 3
1

1 3
1

j j j
jxx j j
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jyy j j
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j j
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μ
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σ

σ μ

⎧ ∂ ∂⎡ ⎤
= + + −⎪ ⎢ ⎥− ∂ ∂⎣ ⎦⎪

⎪ ∂ ∂⎡ ⎤⎪ = + + −⎨ ⎢ ⎥− ∂ ∂⎣ ⎦⎪
⎪ ∂ ∂⎡ ⎤⎪ = +⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

 

(37)

in which, jk  ( 1, 2,3j = ) are constants related to the 
Poisson’s ratio. According to the previous work [2], 
the TSIFs are relatively insensitive to the Poisson’s 
ratio. Therefore, Poisson’s ratio υ  is assumed to be 
a constant. 3 4jk υ= −  for plane strain problem. 

Using the constitutive relation (37) and 
equilibrium equations, the displacement expression 
can be expressed as  

11, 12, 21, 22, 23, 24

11, 12, 21, 22, 23, 24

( , , )

( , , )
j j j j j j j j

j j j j j j j j

u u A A A A A A x y

v v A A A A A A x y

=⎧⎪
⎨ =⎪⎩

 

(38)

where 1j mA  and 2j lA  ( 1, 2,3j = ; 1, 2m = ; 

1, , 4l = ) are unknowns to be decided through the 
known conditions. Some details about the 
displacement expressions can be found in Refs. [4-6]. 
Then using the constitutive relations, the stress 
expressions can be obtained. 

Define the following auxiliary function  

( ,0)
( ) jv x

g x
x

∂
=

∂
,  a x b< <  (39)

The known condition (34) requires 

0=)(xg ,    ( , )x a b∉  (40)
 

 
( ) 0

b

a
g x dx =∫  (41)

Then using conditions (22)-(35), the unknowns 1j mA  

and 2j lA  can be expressed by the auxiliary function 
)(xg . 
Finally, using the crack face condition (36), we 

can obtain the singular integral equation 
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In equation (42), j   corresponds to the layer in 
which x lies. The detailed procedure can be found in 
Ref. [4-6].The singular integral equation (42) will be 
solved by the numerical method in Ref.[7, 8]. 
3 Results and Discussions  

In the following analysis, plane strain state is 
considered. Poisson’s ratio is assume to be 0.33. For 
convenience, the TSIF will be normalized 
by 0 0 0k aσ= . Define the quantities 0 ( ) / 2a b a= − , 

0 ( ) / 2c b a= +  and 0 0 0 0 /(1 )E Tσ α ν= − . Here 

02 022(1 )E ν μ= + . To verify the present method, we 
compare the normalized TSIFs of an edge crack in a 
functionally graded layer with the thickness h. By 
letting 2 3h h= → 0 and 1h h= , the present structure 
in Fig.1 can be reduced to a functionally graded strip 
which has been studied by Erdogan and Wu [2]. The 
Young’s modulus 2 ( )E x  can be determined by the 
shear modulus (1) and thermal properties 2 ( )xλ  and 

2 ( )xα  are defined by exponential functions as the 
expressions (2) and (3). According to the material 
parameter for a super alloy (Rene-41)/Zirconia FGM 
layer in Ref. [2], we have 3 1ln( / ) 0.37498E E = , 

3 1ln( / ) 2.5014λ λ =  and 3 1ln( / )α α = 0.51283   
(e.g., 3 1/E E =1.455, 3 1/ 12.2λ λ =  and 3 1/α α =  
1.67). When the structure undergoes  a uniform 
temperature change, e.g., 1 2 3( ) ( ) ( )T x T x T x= =  

01 02T T T= = = , the thermal stress distribution and 
the TSIFs are shown in Fig.2 and Fig.3. From Fig.2 
and 3, it can be found that the resent results are very 
similar to those of Fig.3 and Fig.8 in Erdogan and 
Wu [2].  

Next, we will consider a three-layered structure 
with 1 2 3 / 3h h h h= = = . Consider an embedded 
crack with it center located at the center of Layer 2, 
e.g., 0 / 0.5c h = . The material parameters of the 
functionally graded interfacial layer is same to the 
above (Rene-41)/Zirconia FGM layer. Assume the 
structure undergoes a steady-state heat conduction 

with the surface temperatures 02 0/ 1T T =  and 

01 02T T≠ . The corresponding TSIFs are shown in 
Fig.4. It is found that the TSIFs increase with the 
increasing of 02 0/T T . Moreover, the TSIFs decrease 
with the increase of the crack length. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Normalized thermal stress distribution in a 
(Rene-41)/Zirconia FGM layer  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Normalized TSIFs for an embedded crack in 
a (Rene-41)/Zirconia FGM layer  

 
Figure 5 shows the influences of the crack 

length and modulus ratio on the normalized TSIFs 
for an embedded crack in a 3-layered structure. We 
assume 1 2 3 / 3h h h h= = = , 0 / 0.5c h = , 02 0/ 1T T = , 

01 0/ 10T T = , 3 1/ 12.2λ λ =  and 3 1/α α =  1.67. 
From Fig.5, it is found that when the modulus 



 

5  

STUDY OF A CRACK IN A FUNCTIONALLY GRADED LAYERED
STRUCTURE UNDER THERMAL LOAD

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

c0/h=0.5 T01/T0=1

k1(b)/k0

k1(a)/k0

N
or

m
al

iz
ed

 S
IF

s

a0/h2

 T02/T0=2
 T02/T0=10
 T02/T0=20

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.8

1.0

1.2

1.4

1.6

1.8

T02/T0=10

k1(b)/k0

k1(a)/k0

N
or

m
al

iz
ed

 S
IF

s

a0/h2

 E3/E1=1.455
 E3/E1=2.0

c0/h=0.5

T01/T0=1

ratio 3 1/E E =1.455 and 2.0, the corresponding TSIFs 
exhibit great difference. Therefore, the 
nonhomogeneous parameters have great influence 
on the TSIFs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Influences of the crack length and 

temperature variations on the normalized TSIFs for 
an embedded crack in a 3-layered structure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Influences of the crack length and modulus 
ratio on the normalized TSIFs for an embedded 

crack in a 3-layered structure  
 

4 Conclusions  

In this paper, the thermal stress intensity 
factors for a crack in a functionally graded layered 
structure are analyzed. A crack intersecting the 
interface is considered. The influences of the 
nonhomogeneous thermal and mechanical properties 
and crack length on the thermal stress intensity 
factor are analyzed. Typically, the variations of 
TSIFs under different temperature changes and 

modulus ratios are depicted when the crack 
intersects the interface. It is found the influences of 
the temperature changes and modulus ratio on the 
thermal stress intensity factors are significant. 
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