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Abstract  

The aeroelastic response and stability of 
bearingless rotors are investigated using large 
deflection beam theory in hover and forward flight. 
The bearingless configuration consists of a single 
flexbeam with a wrap-around type torque tube and 
pitch links located at the leading edge and trailing 
edge of the torque tube. The outboard main blade, 
flexbeam, and torque tube are all assumed to be an 
elastic beam undergoing arbitrary large 
displacements and rotations, which are discretized 
into beam finite elements. For the analysis of 
composite bearingless rotors, flexbeam is assumed 
to be rectangular section made of laminate. The 
sectional elastic constants of a composite flexbeam 
including warping deformations are determined 
from the refined cross-sectional finite element 
method. Numerical results of the static deflections 
and the aeroelastic modal damping are presented 
for various configurations of composite flexbeam. 
 
 
1 Introduction  

Structural dynamic and aeroelastic modeling of 
composite blades undergoing moderate or large 
deflections and their application to the study of 
hingeless,  bearingless,  and t i l t -rotor blade 
aeroelasticity as well as coupled rotor-fuselage 
problems has been a particularly active area of 
research[1]. In recent years there has been growing 
interest in bearingless rotor because of design 
simplicity, more control power and maintenance. A 
bearingless rotor is one example of a hingeless rotor 
in which the pitch bearing, flap and lag hinges are 
eliminated. The bearingless configuration shown in 
Fig. 1 consists of a single flexbeam with a wrap-
around type torque tube, the pitch links located at 
the leading edge and trailing edge of the torque tube 

and main blade. The distinguishing feature of the 
bearingless rotor is both torsionally soft flexbeam 
and torsionally stiff torque tube. The aeroelastic 
stability of a rotor blade is inherently a nonlinear 
phenomenon. The analysis of a bearingless rotor 
blade is more involved than that of a hingeless rotor 
blade because of the redundancy of load paths at the 
root and nonlinear bending-torsion coupling effects. 
Most modern helicopter rotor blades are built of 
composite materials because they have better fatigue 
life and damage tolerance than metal blades. The 
increased use of composite materials in blade design 
also provides the potential for aeroelastic tailoring. 
Generally, studies on rotor blades have been 
performed for global deformation and cross-
sectional analyses.  One-dimensional global 
deformation analyses of rotor blades considering the 
geometrical nonlinearity have been classified into 
two-type beam theories of a moderate deflection-
type and a large deflection-type. It is also important 
to obtain accurate effective sectional stiffness 
through the cross-sectional analysis with one-
dimensional global deformation anaysis. The cross-
sectional analysis has been carried out using both 
direct analytical methods and finite element methods. 
Finite element methods give more accurate results 
than the analytical methods because it is difficult to 
obtain exact sectional stiffness of composite beams. 
Most of the structural dynamic models for rotor 
blades are based on moderate deflection type beam 
theories. These theories are based on ordering 
schemes and are valid for moderate deflections[2]. 
In the literature, some attempts to analyze the 
stability of bearingless rotors using the moderate 
deflection type beam theory have been reported in 
hover[3,4] and forward flight[5,6]. A general 
purpose analysis, however, demands a large 
deflection model without any artificial restrictions 
on displacements or rotations due to the deformation 
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Fig. 1. Bearingless rotor blade configuration 

 
and the degree of nonlinearity. The ordering scheme, 
although a valuable tool in special purpose research, 
is not desirable in a general purpose approach. To 
overcome the limitations of previous models, 
structural models that are valid for large deflection 
and are not based on ordering schemes have been 
developed and used for static and dynamic[7-10] 
analyses of composite beams. The only restriction 
on the deformation in these theories is that the strain 
is relatively small compared with unity. There are no 
small angle approximations made, and all kinematic 
nonlinear effects are included in the formulation. To 
date, there have been relatively few studies on 
aeroelastic analysis of rotor blades using large 
deflection-type beam theories, and this type of beam 
theory has almost been applied to hingeless rotor 
blades[11,12]. 

In the present study the aeroelastic stability 
analysis of isotropic and composite bearingless 
rotors is investigated using a large deflection beam 
theory in hover and forward flight. Two-dimensional 
quasi-steady strip theory is used for aerodynamic 
computation in hover and forward flight. The 
composite flexbeam is idealized as a laminated 
rectangular beam and effective elastic constants are 
obtained from the cross-sectional finite element 
method.  Nonlinear, periodic blade steady response 
solutions are obtained using a time finite element 
method on full finite element equation in forward 
flight condition. Blade response analysis is fully 
coupled with vehicle trim analysis to obtain 
nonlinear blade response, pilot controls, and vehicle 
attitude.  The aeroelastic response is calculated by a 
time-marching solution procedure from the 
linearized stability equation about the nonlinear 
equilibrium position, and then the stability analysis 
is performed by using a moving block analysis. 
Numerical results are calculated for selected 

bearingless blade configurations based on the lay-up 
of laminae in the flexbeam. 

 

2  Analysis 

2.1 Kinematics  
Consider the rotor blade rotating with angular 

velocity Ω  depicted in Fig. 2.  Here the triad 1Ι , 2Ι  
and 3Ι  is fixed in an inertia frame, the triad 1i ,  
and  fixed in a reference frame which rotates with 
respect to the inertia frame at a constant angular 
velocity 

2i

3i

3ΩΙ , the triad ,  and  attached to a 
reference line along the axis of the undeformed 
blade, and the triad 

1e 2e 3e

1e∗ ,  and  attached to a 
reference line along the axis of the deformed blade. 
The geometrical nonlinearities are described using 
coordinate transformation matrices with the Euler 
angles in the present large deflection-type beam 
theory. 

2e∗
3e∗

1 1e t ( )e T( )ii e i ix x∗ = = 1 1 1T( ) t ( )t ( )e g, x x x= (1)

The transformation matrices t , , and T  are 
functions of the curvilinear axial coordinate 

g t e

1x . 
Assuming that initial curvatures are small and 
shearing strains are much smaller than unity in the 
Green-Lagrangian strain components, strain-displace 
ment relations can be expressed as follows :[10] 
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Fig. 2. Geometry and coordinate systems of a rotor 

blade before and after deformation 
 

where ,  and  are curvilinear coordinates and 

,  and  are the general warping displace-
ments of an arbitrary point on the cross section. The 

1x 2x 3x

1w 2w 3w
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force strains )2,2,( 131211 eee  and moment strains 
),,( 321 κκκ  components are given in Ref. [10].  

Here,  means the derivative with respect to  
and  means the derivatives with respect to , 

. 

)(. ′ 1x

i,(.) ix
3,2=i

 
2.2 Cross-sectional analysis 

Considering an energy equilibrium in an 
infinitesimal slice of a loaded beam, the following 
governing equations for the cross-sectional analysis 
can be obtained :[8] 

{ } { }
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In the present work, the cross-sectional modeling for 
the rectangular flexbeam is proposed as Fig. 3. The 
displacement in the thickness direction is 
Interpolated as a linear function and integrated 
analytically. In the other direction, a cubic 
Lagrangian function was used and integrated using 
Gauss-Legendre quadrature. If f  and  are taken 
to be zero in Eq. (3). In  unloaded condition, we can 
obtain effective elastic sectional constants. 
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where and  are the cross-sectional force and 
moment stress vectors in the deformed beam basis, 
and 

F M

e  and κ  vectors are defined as follows : 
{ }11 12 132 2 Te e e=e , { 1 2 3

Tκ κ κ=κ }

0

. The matrices 
,  and  are  matrices that depend on the 

material properties and the geometry of the cross 
section. In the case of isotropic material, these 
matrices are represented by the diagonal term. 

A B D 3 3×

 
2.3 Global analysis and finite element equation 

The outboard main blade, flexbeam, torque 
tube are all assumed to be an elastic beam. The 
equations of motion for a bearingless rotor blade are 
obtained using Hamilton’s principle : 

2

1 1
( )

mt

i i it
i

U T W dtδ δ δ
=

− − =∑∫  (5)

where iUδ , iTδ and iWδ are the variation of strain 
energy, the variation of kinetic energy and the 
virtual work of applied force about flexbeam, torque 
tube and main blade, respectively. 
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Fig. 3. Composite flexbeam cross section and 
sectional nodal distribution 

 
Pitch control to the main blade is applied through a 
torsionally stiff torque tube by rotating it with pitch 
link, which in turn twists the flexbeam. A pitch link 
is connected to the root end of the torque tube at its 
leading or trailing edge. The pitch links model is 
replaced by spring stiffness. In the global finite 
element energy expression, the spring contributes an 
additional strain energy term. When a pitch link is 
connected at torque tube’s leading edge, the added 
strain energy is : 

21 ( )
2P P t tU K w dθ= +  (6)

where PK  is the pitch link stiffness, d is pitch link 
offset from elastic axis,  and tw tθ  are elastic flap 
and torsion displacements, respectively. 

In hover, the induced velocity  is taken to be 
steady and uniform along the blade radius and is set 
equal to the value of inflow given by the combined 
momentum and blade element theory at a radial 
station 

idv

0.75r R= . A linear inflow model is used for 
the rotor inflow distribution in forward flight. In 
hover, the nonlinear finite element equations of 
motion in matrix form can be formulated as: 

[ ]{ } [ ]{ }( ) ( ) ( ) ( )
( ) ( ) ( )

A A

C A

− + −

+ − =

M q M q q G q C q q
P q P q P q

 
(7)

where [ ]M , [ ]AM , [ ]G , and [ ]AC  are the mass, 
aerodynamic apparent mass, gyroscopic damping, 
and aerodynamic damping matrices in finite 
elements, respectively. The term P  is the internal 
elastic force vector,  is the centrifugal load vector, 
and  is the steady aerodynamic load vector. To 

CP

AP
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solve the governing equation of motion (7), 
dropping all time dependent terms, the nonlinear 
steady-state deformation is calculated through the 
iterative Newton-Raphson method. In forward flight, 
the nonlinear, periodic steady response is obtained 
using a time finite element technique. The virtual 
energy expression for the Hamilton’s weak form can 
be obtained as follows : 

∫ =f
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where  is the generalized forces and L  is the 
Lagrangian of the system.  and  are the partial 
derivatives of L  with respect to generalized 
coordinates  and , respectively, which are 
composed of displacements and Euler angles, while 

 is the column vector of the generalized 

moment. 

Q
qL qL

q q

qLp =

iψ  and fψ  represent the initial and final 
states of non-dimensionalized time, respectively.  
Using a first order Taylor series expansion of the 
left-hand side of Eq.(8) with respect to a given state 
vector y , the following governing equation can be 
derived in an incremental form : 
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For the stability analysis in hover, it is assumed 
that the flutter motion is a small perturbation about 
the equilibrium position, and the linearized flutter 
equations are then transformed to the modal space. 
The transformed modal equations are solved through 
the p-k modal flutter analysis. In forward flight, the 
blade perturbation equations of motion are also 
linearized about the equilibrium position. The initial 
value of the perturbed blade motion is taken to be 
10% of the equilibrium position. From the initial 
perturbation, the blade is set free to move and the 
blade perturbation equations of motion are 
integrated by the fourth-order Runge-Kutta method. 
After the time histories of the blade lag, flap, and 
torsional deflections are known, the modal damping 

and frequency of any desired mode can be 
determined from the moving block analysis. 
 

3 Numerical Results  and Discussion 

The sectional elastic constants of composite 
flexbeam are obtained in unloaded condition using 
the refined cross-sectional finite element method.  
Then, these sectional elastic constants are used for 
the one-dimensional  global  analysis .  For 
calculating the elastic constants, nine elements 
about rectangular section are used in cross-
sectional analysis. For the global deformation 
analysis, the blade is discretized into seven four-
noded cubic elements; three elements for the main 
blade, two elements for the flexbeam and two 
elements for the torque tube. For results, only the 
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Fig. 4. Lag damping as a function of collective pitch 
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flexbeam is modeled as a laminated beam; the main 
blade and the torque tube are treated as made of 
metals (isotropic). The time period of one rotor 
revolution is discretized into six  four-noded cubic 
elements in time domain for reasonably good 
convergence. The static analyses of the composite 
rectangular beam based on this method are 
validated. Aeroelastic analyses of bearingless 
rotors with composite flexbeam are performed are 
performed using the large deflection-type beam 
theory in hover and forward flight condition. To 
verify the validity and accuracy of the present 
approach, figs. 4 and 5 show the results of the 
present aeroelastic stability analysis of isotropic 
bearingless rotors in hover compared with the 
existing solutions given in [4]. The present results 
are relatively better correlated with the 
experimental data than the analysis results in [4] at 
all collective pitch angles. 
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Fig. 6. Displacements for a beam 3[0 / 90] S
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Fig. 7. Displacements for a beam 3[45 / 0] S

Table 1. AS4/3501-6 ply properties 

1E  ( ) GPa 142 

2E  (GPa ) 9.8 

12G  ( ) GPa 6 

23G  (GPa ) 3.45 

12ν  0.3 

23ν  0.43 
ρ  ( 3/kg m ) 1580 

 
Table 2. Bearingless Rotor characteristics 

Number of blades,  bN 4 
Radius, R ( ) in 36.0 

Chord/Radius, C R  0.0847
Thrust level, /wC σ  0.08 
Lift Coefficient,  lC 5.73 

Drag Coefficient, 0dC 0.01 
Solidity, σ  0.1079

Lock Number, γ  8.357 
Blade Prepitch, pθ  (deg.) 4.0 

Pitch Link Spring Stiffness,  
2

0m RΩPK  58.606

Pitch Link Offset from Elastic Axis,  
d R  0.03111

 
Figures 6 and 7 show the results of the present 
static analysis compared with the experimental and 
analytical results given in Ref. [7]. The material of 
composi te  rectangular  beam is  chosen as 
AS4/3501-6 graphite/epoxy and the ply properties 
are given in Table 1. Figure 6 show the static 
results of [ ]3

0 90
S

layup without any coupling, 
figure 7 show those of [ ]3

45 0
S

 layup to illustrate 
the effect of bending-twisting coupling[7]. The 
length is 56 , the width is 30  and the ply 
thickness is 0.134 . The results show the 
axial( u ), lead-lag( ), and flap( ) tip displace- 
ments for various layup beam under a tip vertical 
load, respectively. The agreement between the 
results of two analysis and experimental data is 
good. Aeroelastic analysis of bearingless rotors 
with composite rectangular flexbeam of two layup 
configuration, balanced layup [ ]  

and unbalanced layup [ ] ,  are 
performed using the large deflection beam theory 

0 mm mm
mm
v w

6 3 30 /( ) /( 45) Sθ± ±

6 6 30 / /( 45) Sθ− ±
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Fig. 9. Root locus plots for the lag mode for 

balanced and unbalanced layup in hover 
 
in hover to investigate the effects of the structural 
couplings due to the ply orientation of the 
composites. The material properties of composite 
rectangular flexbeam for the present analysis are 
chosen as AS4/3501-6 graphite/ epoxy. The rotor 
characteristics used for numerical computation are 
presented in Table 2. Figure 8 shows that as the 
rotor speed is increased, the lag damping obtained 
in the present analysis is gradually decreased until 
300~400  but augmented from that at various 
ply angles for the balanced layup. Figure 9 shows 

the root locus plots of complex eigenvalues vs ply 
angles for the first lead-lag mode about the two 
layup at 817 rpm . A positive ply angle relatively 
destabilizes the lag mode and a negative angle 
stabilizes the lag mode. The bending-twist 
structural coupling exists in the balanced and 
unbalanced layup and those of unbalanced layup 
are higher than those of balanced layup in some 
part of the ply orientation. Thus, the bending-twist 
structural coupling influences the stability of the 
lag mode. Figure 10 shows the flap and lag tip 
deflections of balanced layup for advanced ratio 

rpm

0.2µ = . An aspect of tip deflections is different as 
ply angles. Figure 11 shows the lag damping at 
various ply angles for the balanced layup as an 
advance ratio. Thus, the bending-twist structural 
coupling influences the tip deflections and the 
stability of the lag mode. 
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Fig. 10. Steady tip deflections in forward flight 
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4 Conclusions  

The aeroelastic stability of a bearingless rotor 
with composite flexbeam in hover and forward flight 
has been investigated. The cross-sectional constants 
of the composite flexbeam are obtained through two-
dimensional analysis using a finite element method. 
The large deflection beam theory is used for the one-
dimensional global analysis undergoing arbitrary 
large deflections and rotations. Numerical results of 
static analysis for the rectangular composite beams 
correlate very well with the previously published 
experimental results. The effects of the structural 
couplings on the stability of the bearingless rotors 
have been investigated for various ply configuration 
of the rectangular composite flexbeams. The 
stability of the lag mode is significantly influenced 
by the bending-twist coupling in hover and forward 
flight. 
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