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Abstract  

In aeroelasticity, divergence of wing structures 
is an important static phenomenon. On the other 
hand, the free vibration analysis is significant to 
investigate the dynamic characteristics of the 
structure. Recently, a comprehensive wing model 
considering the airfoil shape was established. 
However, the analysis of tapered wing was still not 
taken into account so far. In this paper, this model is 
extended to discuss the tapered composite wings. By 
employing the Hamilton’s principle and following 
the standard procedure of finite element formulation, 
an elementwise comprehensive model was developed. 
Because this model can be applied to both static and 
dynamic analyses, divergence and free vibration will 
be studied. In this model, aerodynamic force vector 
containing the lift and moment of the wings was 
approximated by the strip theory, which will then 
lead to a standard eigen-relation for solving the 
divergence dynamic pressure by neglecting the 
inertial terms. Besides, this model will also provide 
another eigen-relation for solving the natural 
frequencies when all the external forces are 
eliminated. 
 
 
1 Introduction  

The fundamental work concerning the 
divergence instability of swept metallic wings was 
done about fifty years ago. It was shown that low 
static aeroelastic divergence speeds were associated 
with the swept-forward wings unless they were 
stiffened enough. Because the metallic wing is 
limited to its material properties, the swept-forward 
wing aircraft was considered as an impossible task 
for a time. Until the aeroelastic tailoring concept for 
the composite wing structures was raised and studied 
by Krone [1], relevant research about swept 
composite wing sprouts once again.            

Numerous different analytical model of the 
composite wing structures such as the classical beam 
model [2,3], the coupled bending-torsion model [4-
6], and the refined models taking warping restraint 
[7-10], transverse shear deformation [11], shell 
bending strain [12,13], and cross-sectional materials 
and geometries [14,15] into account have been 
developed in the past several decades. However, 
they just treated the wing as plane beam without 
considering the airfoil shape due to the complexity. 
Recently, a comprehensive model considering the 
shape of airfoil for composite wing structures was 
therefore developed by our co-workers [16,17]. This 
model can treat the more realistic wing structures 
such as stiffened multicell wings that are composed 
of the laminated skins, stringers, ribs, and spars. No 
matter how comprehensive the model is, it is still 
restricted to the cases of the wings with uniform 
airfoil shape along span direction. 

To study the tapered effect of the wing 
structure and to improve the computational 
efficiency of the comprehensive model, in this 
article the elementwise comprehensive model is 
derived from the Hamilton principle with the 
concept of finite element method embedded in. Both 
the accuracy and computational efficiency of the 
elementwise comprehensive model are compared 
with the results that are provided by the existing 
papers or the commercial finite element software 
packages (ANSYS) in the aeroelastic divergence and 
free vibration analyses. 
2 Elementwise Comprehensive Model of 
Composite Wing 

2.1 Assumptions and the Comprehensive Model  

If the cover skin of the wing is made of 
composite laminates, the entire wing structure may 
be simulated as a composite sandwich plate [16,17] 
in which the wing skins, stringers, and spar flanges 
are simulated as the faces resisting the in-plane force 
and bending moment; furthermore, the spar webs 
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and ribs are simulated as the core resisting the 
transverse shear and the force normal to the face. 
With the transverse stiffening components, it is 
usually assumed that the wing chordwise section is 
strong enough to avoid the deformation. So that 
some aerodynamic parameters are constants as the 
airfoil shape of the wing is fixed. Besides, because 
the wing cross section must have a streamline shape 
commonly referred to as an airfoil section, the 
thickness of the sandwich will be a function of the 
airfoil and the thickness is not too small to neglect 
the transverse shear deformation. Based upon these 
considerations shown above, a comprehensive 
model was developed [17]. In this model, the 
displacement field can be expressed as follows: 

 

 
Fig. 1.  Geometry of the composite wing [16] 
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where u, v, and w are the displacement components 
in the direction x (chordwise), y (spanwise), z 
(thicknesswise), respectively (Fig. 1); t is the time 
variable, v0 the midplane displacement in the y 
direction, wf the displacement (positive upward) in 
the z direction measured along the reference axis, 
and θ the rotation angle with respect to x axis due to 
twist around the reference axis (positive nose up), 
that is, βx=θ. Furthermore, βf is the rotation angle of  
x-z plane with respect to the y axis measured at the 
reference axis and βr is the variation rate of βf along 
the x axis, hence βx=βf+xβr. Through the above 
interpretation, it is obvious that there are five basic 
deformation functions for the stiffened composite 
wing structures as follows, v0, wf, θ, βf, and βr. The 
equations of motion, constitutive equation, and 

boundary conditions can be expressed in matrix 
form as follows: 

dIpFF 00 =+−′  (2) 

dKdKF ′+= 21 ,       dKdKF ′+= T
100  (3) 

FdKdK ˆ
21 =′+  on fyy =   and 0yy =  (4) 

where F, p and d are, respectively, the section force, 
surface force and displacement vectors; K0, K1 and 
K2 are stiffness matrices related to the extensional, 
coupling and bending stiffness of the composites; I0 
is a matrix related to the mass, gravity center and 
moment of inertia. The overdot and the prime denote, 
respectively, the differentiation with respect to time 
and space. The overhat stands for the prescribed 
value on the boundaries. Please refer to Hwu and 
Gai [17] for detailed explanation. 
2.2 Deduction of the Elementwise Comprehensive 
Model  

In order to refine the comprehensive model, the 
model is rederived from Hamilton’s principle [18] as 
shown by the following equation: 

( ) 0
2

1

=−∫ dt
t

t
κπδ  (5a)

where π is potential energy consisting of strain 
energy and the work done by the body forces and 
surface tractions and κ is the kinetic energy as 
follows, 
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By introducing Eq. (3) into Eq. (5b) and (5c) and 
subtracting Eq. (5c) from Eq. (5b), we may obtain 
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The governing equations and boundary conditions 
derived from Eq. (6) agree with Eq. (2) and Eq. (4) 
derived in [17].  
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Fig. 2.  Local coordinate of each element 
 
Because y-axis is the primary coordinate 

variable in the wing structure. Thus the wing 
structures are simulated as a beam divided in n 
elements connected along the y axis. Each element 
has 3 nodes (Fig. 2) and the shape function of each 
node is expressed by 2nd order polynomials. By 
following the procedures stated between eqns.(5)-(6), 
the energy expression of each element can be written 
in terms of the nodal displacement vector ue as  
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in which g is a function of time, and Ke, Je and fe are, 
respectively, element stiffness matrix, element 
inertia matrix and element external force vector 
determined through the following relations: 
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where N(y) is the shape function matrix. 

2.2.1 Divergence  
In this article, we will use the aerodynamic 

strip theory and the known results for two-
dimensional flow to approximate the lift and the 
pitching moment [19]. The relation between the 
structure deformation and aerodynamic forces (lift 
force L and pitching moment T) can be expressed as  

( ) ( )[ ]Λ′−+= tan)(0 fn wyacacqyL θθ  (9a)

( ) ( ) ( )[ ]Λ′−++= tan)(,
2

0 facmn weyeacCcaceqyT θθ  (9b)

where c is the chord length, 0θ  the initial angle of 
attack, Cm,ac the pitching moment coefficient about 
the aerodynamic center, and e the distance between 
the lines of aerodynamic and flexural centers. The 
normal dynamic pressure qn is  

Λ=≡ 22 cos
2
1 qVq nn ρ  (10)

where ρ , nV , q , and Λ  are the density of the 
airflow, airflow velocity normal to the leading edge, 
dynamic pressure, and the angle of sweep 
respectively. The lift curve slope coefficient a is a 
aerodynamic parameter defined as 

Λ+
=≡

cos40 AR
ARa

d
dC

a L

α
 (11)

where a0 is the corresponding 2D lift curve slope and 
AR is the aspect ratio. 

With the aerodynamic functions listed above, 
the external aerodynamic force vector fe can be 
simplified further as 

( )ean
T

e qdyyy uKppNf +== ∫ 0)()(  (12)

where the value of 0p  is constant, but the value of 
the aerodynamic stiffness matrix aK  varies with the 
interaction between the aerodynamics (L, T) and the 
displacement function (ue). 

Because divergence is a static phenomenon in 
aeroelasticity, we can neglect the time effect by 
eliminating the inertial terms Je. Equation (7) can 
therefore be rewritten as follows 
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T
eee

T
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After substituting Eq. (13) into Eq. (5a), the 
equilibrium equation of the divergence analysis is 
expressed as 
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The determinant of the coefficient matrix of ue 
should be zero to avoid the trivial solutions, which 
will then lead to the result of divergence, 
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1
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aan

T
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Obviously, it is an eigen problem and the eigen-
value and eigen-vector indicate the normal 
divergence dynamic pressure and the nodal 
displacement vector respectively. After the 
superposition of all the elements accomplishing, the 
eigen problem can be solved. 

Node 1 Node 2 Node 3 
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2.2.2 Free Vibration  
To determine the natural frequency of the stiffened 
wing structures, the values of all components in the 
body force distribution vector p~  and the prescribed 
surface traction îT  are both set as zero in the 
equation. So that the element external force vector 
can be expressed as fe=0. Furthermore, g(t) is 
assumed as a harmonic motion with the natural 
frequency ω  in the free vibration analysis. By using 
Eq. (7) and Hamilton’s principle again, the equation 
of motion is derived as 

( ) ( )[ ] 0uJJKK =+++ e
T
ee

T
ee

2

2
1 ω  (16)

The nontrivial solutions of Eq. (16) exist only when 
the determinant of the coefficient matrix of ue 
becomes zero, which will then provide us the 
following equation for solving natural frequencies: 

( ) ( ) 02
12

2
1 =+++ T

ee
T

ee MMKK ω  (17)

As shown above, it is also an eigen problem 
and the eigen-value and eigen-vector indicate the 
square of natural frequency and the nodal 
displacement vector respectively. After the 
superposition of all the elements accomplishing, the 
eigen problem can be solved. It is similar to the 
divergence analysis. 
3 Numerical Results 

3.1 Divergence  

In this section, the calculating efficiency of the 
elementwise comprehensive model will be shown 
first. And the accuracy of the present model will be 
examined by comparing with the existing numerical 
solutions provided by other papers. 

 

 
Fig. 3.  Convergence study of the present model 

As shown in Fig. 3, even the wing is just 
divided into few elements, the divergence dynamic 
pressures (of different aspect ratio) calculated by the 
elementwise comprehensive model still converge 
very rapidly . To further examine the computational 
efficiency, the example of composite wing structure 
with NACA 2412 airfoil used by Hwu and Tsai [16] 
is adopted here. The present method only spends 
1/10 of the time consumed in Ref. [16]. 

Next, the accuracy of present model is checked 
by comparing with the results of the uniform 
metallic wing structure (without tapered) evaluated 
by Weisshaar [20] and Librescu [21]. As shown in 
Fig. 4, the present data also agree with them 
especially when AR = 4. Besides, Fig. 4 also reveals 
that the divergence dynamic pressure will decrease 
as the values of aspect ratio AR increase. 

 

 
Fig. 4.  Comparison with the existing data 
 

 
Fig. 5.  Tapered effect in aeroelastic divergence of 

the wing structure 
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Before investigating the tapered effect in wing 
structures, the taper ratio rt is denoted as  

 

root

tiproot
t c

cc
r

−
=  (18)

where croot and ctip are the chord lengths of the wing 
root and wing tip, respectively. 

The examples in a series of tapered ratios are 
solved for AR = 4 and 5. The numerical results are 
shown in Fig. 5. It shows that once the value of 
tapered ratio increases, the value of divergence 
pressure will increase, too.  
3.2 Free Vibration  

In this section, the present model is first 
examined by comparison with the existing numerical 
data of the wing structure with uniform span 
evaluated by Hwu and Gai [17]. The geometry 
properties of the wing are chordwise length c=0.1m 
and spanwise length L=0.4m shown in Fig. 6 (with 

tiproot cc = ) where rootc  and tipc  means the chord 
length at the wing root and wing tip respectively. 
The detailed material properties of wing are listed in 
[17]. 

 
Fig. 6. Geometry of the tapered composite wing 
 

Table 1 shows the natural frequencies got from 
the present model in this article well agree with the 
solution of Hwu & Gai and ANSYS. It deserves to 
be mentioned that the calculating efficiency is also 
improved as shown in Table 2. 

 
Table 1. Natural frequencies comparison for the 

wing structure with uniform span  (Unit:Hz) 
Mode No. Present Hwu & Gai 

[17] ANSYS 

I 16.89 16.15 15.75 
II 99.12 96.45 93.84 
III 108.69 110.34 114.94 
IV 256.83 252.45 245.18 
V 325.23 333.85 343.82 

 
Table 2. Time consumed comparison 
 Present Hwu & Gai 

[17] ANSYS

Time consumed 
(minute) 2 25 30 

 
Table 3. Effects of the taper ratio on the basic 

natural frequencies (Mode I) (Unit:Hz) 
Taper ratio Mode No. Present ANSYS 

I 16.89 15.25
II 99.12 90.35
III 108.69 113.16
IV 256.83 234.64

1.0 

V 325.23 275.61
I 17.38 14.37
II 99.88 85.11
III 113.85 117.66
IV 256.83 224.07

0.95 

V 330.82 280.47
I 19.08 16.47
II 101.88 88.43
III 132.73 125.47
IV 256.89 224.35

0.80 

V 350.35 277.64
I 20.49 17.13
II 103.39 87.02
III 148.41 133.02
IV 257.09 217.85

0.70 

V 366.40 271.96
I 22.21 17.91
II 105.23 85.39
III 167.08 155.67
IV 257.58 210.67

0.60 

V 385.92 268.10
I 35.50 22.90
II 122.80 80.28
III 267.76 120.55
IV 282.12 180.53

0.20 

V 465.98 213.95
 
 

croot 
x 

ctip 

L=400mm  

Wing Root 

y 

 

Wing Tip 
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Fig. 7. The trend of the natural frequency (Mode I) 

 
Then we consider a tapered composite wing 

structure with NACA 2412 airfoil and the same 
material properties as the preceding example. But 
the values of taper ratio are set as a series of values 
1.00, 0.95, 0.80, 0.70, 0.60, and 0.20. In order to 
check the accuracy, the natural frequencies are 
evaluated in two ways, the present model and 
ANSYS. The results of the present model do not 
agree well with ANSYS shown in Table 3. The 
difference may result from that the mesh-process 
encounter something trouble for the geometry 
variation (tapered wing). However, we observe a 
trend that the basic natural frequency will increase 
when the taper ratio tr  decrease, as shown in Fig. 7. 

4 Conclusion  
By embedding the finite element formulation 

in the comprehensive model [17], the elementwise 
model in this article can deal generally with the 
uniform and tapered composite wing structures. 
Besides, the excellent calculating efficiency saves a 
lot of computational time that is consumed before. 

The divergence analysis and the free vibration 
analysis both are eigen-value problems. With the 
usual procedure for finite element formulation, the 
eigenvalue such as divergence dynamic pressure and 
the natural frequencies could be solved similarly. It 
can also be observed that the divergence dynamic 
pressure will increase but the fundamental natural 
frequency will decrease when the taper ratio rt 
increases. 
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