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Abstract  

The interface to interface crack in a sandwich 
construction is investigated. The crack constitutes a 
transition state between the core crack and the 
interface crack. Furthermore the crack problem can 
be used to assess the tunneling of cracks through a 
sandwich structure.  

The crack is analyzed within the framework of 
analytical elasticity. Though central parts of the 
solution have to be established numerically, the 
analytic parts give useful insight into the nature of 
the solution, especially pertaining to the nature of 
the singular or near tip behavior of the crack. 
During the course of analyzing this problem it is 
established that for a wide variety of problems two 
singularity parameters have to be carried through in 
order to attain accurate solutions. 

Results are given in terms of a case study 
pertaining to sandwich constructions with aluminum 
faces and two different foamed PVC core, as well as 
in more generalized terms. 
 
1 Introduction  

Sandwich structures are widely used in 
applications where a combination of large stiffness 
and low weight are of great importance. The layered 
structure of the sandwich construction with stiff face 
sheets and a soft core material in between is the 
essential idea behind obtaining high stiffness in 
combination with low weight. The low stiffness core 
is, on the other hand, a critical part of the sandwich 
structure, as the desire for low weight also has a 
tendency to induce relatively low strength. Among 
the failure modes for sandwich structures are core 
cracking for cores with relatively poor toughness. 

In this investigation a core to core crack 
configuration is presented. In static and fatigue 
loading [1,2] of sandwich structures failure by 
cracking of the core often starts by small cracks in 

the core center which grows towards the interfaces 
between the core and the face sheets. As the cracks 
approach the interfaces the influence of the very stiff 
face sheets as compared to the core becomes 
increasingly important. Detailed information about 
the transition from a core crack to an interface crack 
requires the interface touching crack solution, which 
is addressed in this paper. The solution is 
furthermore applied to asses the ability of such 
cracks to tunnel through the sandwich structure. 

The light weight properties are obtained 
through the lay-up of the sandwich structure it self, 
which in its basic structure consists of two strong 
and stiff face sheets with a light weight and 
relatively soft core in between. The face sheet 
material can be eg. steel, aluminum or a fiber 
reinforced polymer. The core material can be eg. a 
polymeric foam, balsa wood or a honeycomb 
structure. In either case a very large stiffness 
difference between the face sheet material and the 
core material is present. The general properties of 
sandwich structures have been described in text 
books such as [3] and [4]. In this study emphasis is 
put on a sandwich construction with aluminum faces 
and foamed PVC cores. 

In this analysis the interface to interface crack 
is addressed through an analytical approach for 
solving the appropriate linear elastic equations. 

 
2 Teory  

2.1 Geometrical Configuration  

The sandwich structure under investigation is 
depicted in Fig. 1. The sandwich consists of two face 
sheets and a core in a symmetric lay-up with a 
collected thickness 2h, and a core thickness of 2t. A 
crack of length 2c the face sheets and the core are 
assumed isotropic with Young’s moduli E1 and E2 
and Poisson’s ratios ν1 and ν2 respectively. The far 
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field loading is any combination of tension P, 
bending M or shear V.  

2h 2t θ x

y
E1 1,ν

E1 1,ν E2 2,ν
P

P
M

M V

V

 

Fig. 1. An interface to interface crack in a sandwich 
structure 

 
Within the same framework the ability of an 

interface to interface crack to tunnel through the 
sandwich structure can be determined. A tunnel 
crack is depicted in fig. 2., where the crack has 
partially penetrated the sandwich. The analysis of 
such a tunneling crack consists of estimating the 
change in strain energy density ahead of the crack, 
and well behind the crack front, or more directly 
estimating the work per unit thickness needed to 
close the crack. 

2h 2t θ

y

 
Fig. 2. Tunneling of a crack in a sandwich. 

 
 
2.2 Crack Modelling 

The crack is modeled by the dislocation pile-up 
method [5]. Such that the crack opening is obtained 
through integral equations which ensure that the 
traction boundary conditions along the crack faces 
are satisfied. 

Formally this can be written as 
 ηηησσ θθθ dzKBi

C
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∈
 (1) 

where C is the domain of the crack, B(η) is the 
dislocation pile-up corresponding to Burgers vector 
between η and η+dη. K(z,η) is correspondingly the 
influence function for a dislocation [6]. In the 
analysis of the influence function due consideration 
to the large difference in stiffness between the core 
and face sheet materials has to be taken into account. 
This involves explicit extraction of near singular 

terms appearing due to the weak coupling between 
the face sheets through the core. 

The dislocation pile-up is most can be 
separated into terms as 
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Where L=t/sin(θ). B(η) is in general complex. 
B0(η) is non-singular and the terms including 

kU1 and kU1  pertains to the upper crack tip and kL1 
and kL2 pertains to lower crack tip at respectively. 
The singularity parameters λ1 and λ2 can be obtained 
through potential analyses [7] or in the process of 
solving (1). When the crack is moderately slanted 
two singularity parameters appear, and for strongly 
slanted cracks the singularity parameters becomes 
complex. The appearance of two singularity 
parameters makes the basic description of the 
dislocation pile-up somewhat more involved 
compared to the vertical crack, where only one 
singularity parameter appears. It should be 
emphasized that both parameters should be 
explicitly included in order to obtain accurate 
numerical results. 

The separation of the dislocation density 
function ) into a sum rather than the more 
conventional product of functions containing the 
appropriate singularities offer the advantage that the 
choice of integration scheme is much freer. Further-
more analytical integration can be applied to a 
number of details in the kernel and dislocation 
density function, whereby the remaining numerical 
integrations can be made quite robust. The latter has 
been applied extensively in the numerical 
implementation of the present problem. 

The ability of the crack to tunnel through the 
sandwich structure can be described through the 
average energy release rate G along front of a 
tunneling crack as depicted in fig. 2. The calculation 
of the energy release rate is most conveniently done 
by determining the work per unit thickness needed 
to close the crack given by 
 ηδδσσ θθθθ dii

L
G r

C
r )}()Re{(

4
1

++= ∫  (3) 

where σθθ+iσrθ are the stresses determined far ahead 
of the crack, ie. the rather trivial solution for a 
sandwich without a crack. The term δθ+iδr is the 
crack opening given in terms of the dislocation 
density function by  
 ∫
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An outline of the analysis method for the end-
point singular solution is given in the following. As 
well as the resulting tunneling crack results. 
 
2.3 Determination of kernel function  

The kernel function is established using 
Muskhelishvili’s potentials [7] for a dislocation in 
the core material of the sandwich. 

Stresses are obtained in terms of 
Muskhelishvili’s potentials as 
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and displacements are given by 
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in accordance with the usual conventions of notation 
for complex potentials. μ is the shear modulus and κ 
is the Kolosov constant given by κ=3-4ν for plane 
strain and κ=(3-ν)/(1+ν) for plane stress respective-
ly. 

The displacement derivative 
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is applied to formulate displacement continuity 
across the interfaces. This ensures continuity to 
within immaterial rigid body translations and offers 
the advantage, that only potentials pertaining to 
stresses (5) needs to be determined. 

Using the transformation relations 
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(9
it suffices to solve for a dislocation centered at x=0, 
and use ) for off axis dislocations. 

The potential for the upper face sheet can be 
expressed as 
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The potential for the core can be written as 
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where Φ0(z) and Ψ0(z)  pertains to a dislocation in an 
infinite medium of core material, as given below. 

The potentials for the lower face sheet are 
expressed as 
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The potential for a dislocation in an infinite 
medium can be determines as 
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(13
For a dislocation at y0 (and x0=0) the functions 

 through in )(1 sb )(4 sb ) are given by 
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and 
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for above  and below  respectively. The 
parameter 

y 0y 0y
A  is given as 

 ( )
( )2
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1 κπ
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where bx and by are the x and y components of 
Burgers vector. Index 2 refers to the core material in 
accordance with fig. 1. 

The formulation followed in (10) through (13) 
constitutes a Fourier transform formulation of 
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Muskhelishvili’s potentials. The truncated Fourier 
transforms with integration limits of 0 to ∞  rather 
than the usual –  to  is allowed by solving for a 
dislocation situated at x0=0, and utilizing the 
transformation formula 

∞ ∞

(9) for generalizing to off 
axis solutions rather than the Fourier transform 
formulation it self. 

Applying traction continuity through (5) and 
displacement continuity through (8) for the 
interfaces between the core and the upper and lower 
face sheets of the sandwich yields 8 equations for 
determining the functions a1(s) through a12(s) in 
(10

(10

(10

(10

)-(12

(12

). The traction free outer surface for the 
upper and lower face sheets renders the remaining 4 
equations. The 12 equations for the boundary 
conditions are reduced to algebraic equations in 
a1(s)…a12(s) by removing the integrations 
introduced in )-(13

(13

) such that the equations are 
satisfied by matching the integrands appropriately. 

The determination of the functions 
a1(s)…a12(s) is straight forward but explicit 
expressions are forbiddingly large, and the 
integrations in )- ) consequently have to be 
determined numerically. A Gauss-Laguerre 
quadrature was employed for this task. In order to 
obtain stable numerical integration it is necessary to 
remove singular and often certain near singular 
terms in a1(s)…a12(s) and perform analytical 
integrations on these numerically unstable parts. The 
first appears in general for far field terms. The latter 
particularly appears for large stiffness differences 
between the core and face materials.  
 
2.4 Near tip analysis in the core material 

In order to assess the nature of the solution it is 
necessary to investigate the potentials for the core 
material. In general the potentials can be written as 

   (17) 
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D (z,z0) are the obtained from 
) to ) such that z0 is on the crack C with 

natural coordinate η and the dislocation density is 
adjusted such that the traction free crack faces is 
ensured. The excact integration of ) is of course a 
numerical problem, but partly analytical integration 
greatly improves the solution stability, as well as 
giving qualitative insight into the solution structure.  

The potentials ) for the core material can be 
integrated partly for Cauchy singular terms and the 
associated image terms due to the interfaces along 

with the power law terms in the dislocation density 
function (2). Formally ) be rewritten as 
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where φ2(z) and ψ2(z) are nonsingular functions. 
L(z,k,λ) and M(z,k,λ) are given by 
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where and θς ie= ξ  is 1 for z to the right of the 
crack and -1 for z to the left of the crack. δ1 and δ1 
are given by 
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and α and β are the Dundurs parameters [8] given by 
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The traction along the crack face due to the singular 
endpoints can be obtained from (18) to (20) by 
neglecting the non-singular parts of the potentials. 
For the traction to be finite as the crack tips are 
approached the following equations are obtained 
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such that (23

(23

(23
(23

) constitutes a characteristic equation 
for determining the singularity parameter λ. The 
characteristic equation ) is in accordance with 
that obtained by Zak and Williams[9] by direct 
application of potential solutions.  For a vertical 
crack equation ) has a double root. For not too 
slant cracks ) has two distinct roots between 0 
and 1, and for very slant cracks the roots are 
complex with a real part less than 1/2. 

In the case of two distinct roots an associated 
phase angle is given by 
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The interpretation of the phase angle γ is, that the 
geometrical singularity parameters in (2) are to 
interpreted as 

  (26) 
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where c1 and c2 are real arbitrary numbers 
determined in the process of solving (1). 
3  Results 

3.1 Case Studies 
Material H60 H200 Al 
E-modulus [Mpa] 60 235 71820
Poisson’s ratio 0.31 0.36 0.33 
Thickness [mm] 20 20 10 

Table 1.  Properties for two core materials and the 
face sheet. 

 
A combination of materials consisting of two 

PVC core foams and aluminum face sheets of 
practical use is considered. The elastic properties are 
given in table 1. along with practically relevant 
thicknesses of the core and face sheet materials. 

The stiff core H200 with aluminum faces will 
be referred to as case 1 and the softer core material 
H60 with aluminum faces will be referred to as case 
2. 

The singularity parameters as obtained from 
(23) pertaining to case 1 and 2 are illustrated in Fig. 
3.  
 

1500
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Fig. 3. Singularity parameter λ. 
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Fig 4. Phase angle for real singularity parameters. 

 
The solution of the characteristic equation (25) gives 
for the vertical crack (θ-90ο=0) a double root of λ 
=0.3267  and λ =0.2968  for case 1 and case 2 
respectively. For a not too slanted crack two distinct 
real roots appear. For case 1 this regime is limited up 
to the angle 53.5o and for case 2 up to 62.1o. Above 
these limits for very slanted cracks the singularity 
parameter becomes complex. In fig. 3 the upper 
branches correspond to the real parts of the 
singularity parameters, whereas the curves at the 
lower right corner of the figure are the imaginary 
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parts of the complex singularity parameter. For the 
interface crack  (θ-90ο=90) the real part of the 
singularity parameter approaches ½. 

The phase angle associated with real roots as 
given by (25) corresponding to fig. 3 is shown in fig. 
4. 

The basic fracture mechanical result for a 
vertical crack approaching the interface in a 
sandwich loaded by a tensile force is shown in fig. 5. 
Relevant solution parameters are listed in table 2. In 
figure 5 c is the half crack length, such that c=t 
corresponds to the interface touching crack. The 
loading is pure tension. 

 
 Case 1 Case 2 
α 0.998291 0.993569 
β 0.21834 0.27366 
σc /σ 0.000426 0.00159 

Table 2. Dundurs parameters and stress carried by 
the core σc normalized by the average stress σ. 
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0.0

0.8 0.84 0.88 0.92 0.96 1.0 c t/

Case 1
Case 2

KI

σc πt

 
Fig. 6. A symmetrical transverse crack under normal 
load approaching the interfaces. 

 
In fig. 5. the stress intensity factor KI is 

normalized by the core stress in the uncracked 
configuration σc as indicated in table 2. As the crack 
tips approach the interfaces the SIF’s diminishes due 
to the influence of the stiff face sheets. The 
singularity parameter in equation 2 is  λ =0.2968 and 
λ =0.3267  for the soft and stiff core materials 
respectively. In turn the SIF’s in fig. 2 diminishes 
with 
  (27)  λ−−= 2/1)( ctAK I  3) 
where the power ½-λ describes the speed with 
which the SIF’s falls, and the proportionality 
constant A, obtained as 0.414 for Case 1 and 
1.66 for Case 2 respectively. 

0 0.5-0.5 1-1

Case 1

η/t

Case 2

 

Fig. 7 Crack opening profile for interface to 
interface crack 

The crack opening profile is sketched in figure 
7. The opening displacements are very similar, 
but the stress intensity factors are 0.00131 MPa 
m0.3267/N for case 1 and 0.00573 MPa m0.2968/N for 
case 2 respectively    
3.2 General results  

The average energy release rate is shown in fig. 
8. The thickness of the face sheets is varied with 
the core kept at a thickness of 10mm. The 
energy release rates are very close except for 
very thin face sheets.  
 

0.01 0.5 ( - )/h t h

G/P

0.04

0.08

0.012
α=0.999

α=0.99

0.10.05  
Fig.8 Average energy release G rate normalized by 
force per unit length P for varying thickness of face 
sheets (β=0.25). 

 

0.01 0.5 ( - )/h t h

K P tI / / 10(1+ ) -3λ

4

8

12

16

α=0.999

α=0.99

0.10.05  
Fig.9 Stress intensity factor normalized by force per 
unit length P and core thickness to the power 
1+λ for varying thickness of face sheets (β=0.25). 

Stress intensity factors are depicted in figure 9 for 
two values of α and β kept at a typical value of 0.25. 
Increasing the stiffness (or increasing α) clearly 
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increases the stress intensity factor, and stiffer core 
materials thereby lead to increased local bending of 
the face sheets in the vicinity of a crack. 
 
4  Conclusion 

An analytical approach to solving the interface 
to interface crack through the core in a sandwich 
structure has been devised. From this analysis the 
generalized stress intensity factors for the interface 
touching cracks can be determined, and detailed 
information for cracks approaching the interfaces  
can be obtained. 

The plane strain analysis of the interface to 
interface crack can further be applied in determining 
if such cracks are able to tunnel through a sandwich 
structure. That is the solution provides the necessary 
information for calculating the energy release rate 
for crack tunneling. 

Interface to interface core cracks can behave in 
a number of ways depending on the angle of the 
crack to the interface. It has been demonstrated by 
example that for slanted cracks two singularity 
parameters are needed, unless the slanting is large, 
where a single complex singularity parameter 
suffices. 
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