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Abstract  

A damage model is proposed for the 

simulation of delamination growth under high-

cycle fatigue. The basis for the formulation is an 

interfacial degradation law that links fracture 

mechanics and damage mechanics to relate the 

evolution of the damage variable, d, with the 

crack growth rate da/dN. The damage state is a 

function of the loading conditions as well as the 

experimentally-determined crack growth rates 

for the material. The formulation ensures that 

the experimental results can be reproduced by 

the analysis without the need of additional 

adjustment parameters. 
 

 

1 Introduction  

High-cycle fatigue is a common cause of 

failure of aerospace structures. In laminated 

composite materials, the fatigue process involves 

several damage mechanisms that result in the 

degradation of the structure. One of the most 

important fatigue damage mechanisms is 

interlaminar damage (delamination). 

There are two basic approaches for the analysis 

of delamination under fatigue: Linear Elastic 

Fracture Mechanics, which relates the fatigue crack 

growth rate to the energy release rate and mode-

ratio, and damage Mechanics, where the concept of 

a cohesive zone is used to establish damage 

evolution as a function of the number of cycles.  

Under general cyclic loading, the total damage 

is the sum of the damage caused by static or quasi-

static loads and the damage that results from the 

cyclic loads. For high-cycle fatigue, the damage 

evolution that results from cyclic loads is usually 

formulated as a function of the number of cycles and 

strains (or displacement jumps) [1–3]. A damage 

evolution law expressed in terms of the number of 

cycles is established a priori by adjusting several 

parameters through a trial-and-error calibration of 

the analysis [1–3].  

In this paper, an approach is proposed whereby 

the evolution of damage derives from a Fracture 

Mechanics description of the fatigue crack growth 

rate. The approach is formulated using the cohesive 

zone model concept. A constitutive damage model 

previously developed by the authors for static or 

quasi-static loads [4-5] is enhanced to incorporate a 

damage evolution law for high-cycle fatigue. In the 

present model for fatigue damage, the evolution of 

the damage variable associated with cyclic loading is 

derived from a Fracture Mechanics description of 

the fatigue crack growth rate. Therefore, the 

proposed model links Fracture Mechanics to 

Damage Mechanics.  

The model relates damage accumulation to the 

number of load cycles while taking into account the 

loading conditions (load ratio, R, energy release rate, 

G, and fracture mode-ratio). When used in a 

structural analysis, the model can simulate the 

dependence of the crack growth rate on these 

parameters. In addition to the Paris Law crack 

growth regime, the model also exhibits a threshold 

value for no growth as well as quasi-static tearing.  

The new fatigue damage model is implemented 

as a user-written element in ABAQUS [6] based on 

the cohesive finite element previously developed by 

the authors [5]. 
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2 Simulation using cohesive elements 

2.1 Cohesive zone model approach 

 

The CZM approach [7-9] is one of the most 

commonly used tools to simulate quasi-brittle 

fracture. The CZM approach represents a damage 

zone that develops near the tip of a crack and 

assumes that all inelastic material response can be 

lumped to a surface ahead of the crack tip. 

 

Cohesive damage zone models relate tractions, 

τ , to displacement jumps, ∆ , at the interfaces 

where crack propagation occurs. Damage initiation 

is related to the interfacial strength of the material, 
oτ . When the energy dissipated is equal to the 

fracture toughness of the material, 
c

G , the traction is 

reduced to zero and new crack surfaces are formed.  

 

 

2.2 Numerical representation of the CZM 

 

The constitutive law used is a bilinear relation 

between the tractions and the displacement jumps 

[4,5]. The bilinear cohesive law uses an initial linear 

elastic response before damage initiation, as shown 

in Figure 1. This linear elastic part is defined using a 

penalty stiffness parameter, K , that ensures a stiff 

connection between the surfaces before crack 

propagation. The interfacial strength and the penalty 

stiffness define an onset displacement jump, o∆ , 

related to the initiation of damage. 

 
Fig. 1. Bilinear constitutive law used for quasi-static 

loads. 

 

2.2.1 Kinematics and constitutive model for 

quasi-static loading 

 
The displacement jump across the interface 

[ ][ ]iu , is obtained from the displacements of the 

points located on the top and bottom sides of the 

interface, +
i

u  and −
i

u , respectively: 

 

[ ][ ] −+ − iii uuu =
 

(1)

 

where ±
i

u  are the displacements with respect to a 

fixed Cartesian coordinate system. A co-rotational 

formulation is used to express the components of the 

displacement jumps with respect to the deformed 

interface. The coordinates 
i

x  of the deformed 

interface are [10]:  

 

( )−+ ++ iiii uuXx
2

1
=

 
(2)

 

where iX  are the coordinates of the undeformed 

interface. 

 

The components of the displacement jump 

vector in the local coordinate system on the 

deformed interface, m∆ , are expressed in terms of 

the displacement field in global coordinates:  

 

[ ][ ]
imim uΘ∆ =  (3)

 

where miΘ  is the rotation tensor, defined in [4,5]. 

The constitutive operator of the interface, 
ji

D , 

relates the element tractions, jτ , to the displacement 

jumps, i∆ : 

 

ijij
D ∆=τ  (4)

 

The constitutive model must compute 

accurately the energy dissipated by fracture. Under 

mixed-mode loading, a criterion established in terms 

of an interaction between components of the energy 

release rates associated with each fracture mode is 

used to predict crack propagation. The formulation 

r 
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of the damage model previously proposed by the 

authors [5] is summarized in Table 1, where ψ  and 
0ψ  are the free energy per unit surface of the 

damaged and undamaged interface, respectively. 

The function 
ij

δ  is the Kronecker delta, and the 

variable d is a scalar damage variable. The 

parameter λ  is the equivalent displacement jump 

norm. The equivalent displacement jump is a non-

negative, continuous scalar function defined as:  

 

( )22

3= shear∆+∆λ  (5)

 

where  is the MacAuley bracket defined as 

( )xxx +
2

1
= . The displacement jump in Mode I, 

i.e., normal to midplane is 3∆ . The displacement 

jump tangent to the midplane, 
shear

∆ , is the 

Euclidean norm of the displacement jump in Mode 

II and Mode III: 

 

( ) ( )2

2

2

1
= ∆+∆∆

shear
 (6)

 

 

Table 1. Definition of the constitutive model.   

Free Energy   ( ) ( ) ( ) ( )
33

00 dd1=d, ∆−−∆−∆
ii

δψψψ  

Constitutive 

equation  

( )
33

dd1== ∆−−∆−
∆∂

∂
jijjij

i

i
KK δδδψτ

 

Displacement 

jump norm  
( )22

3
=

shear
∆+∆λ  

Damage 

criterion    ( ) ( ) ( ) 0t0GG:=, tttt ≥∀≤− rrF λλ  

 
( ) ( )

( )of

of

∆−∆
∆−∆

λ
λλ =G  

Evolution 

law 

( ) ( )
λ
λµ

λ
λµ

∂
∂

∂
∂ G

=
,

=d &&&
rF

 

Load/unload 

conditions ( ) ( ) 0=,;0,;0 tttt rFrF λµλµ && ≤≥  

 { } t0max,max=t ≤≤∆ sr s

s

o λ  

 

The evolution of damage is defined by a 

suitable monotonic scalar function, (G  ) , ranging 

from 0 to 1. A damage consistency parameter, µ& , is 

used to define loading-unloading conditions 

according to the Kuhn-Tucker relations.  

 

Under crack closure during load reversal, the 

constitutive model prevents interpenetration of the 

faces of the crack by restoring the normal penalty 

stiffness of the element even in the presence of 

damage. Further details regarding the damage model 

can be found in references [4,5]. 

 

Under loading conditions, the damage variable 

is calculated as: 

 

)(

)(
=d

of

of

∆−∆
∆−∆

λ
λ

 (7)

 

The relation between the damage variable d , 

representing the loss of stiffness, and the damage 

variable d , representing the ratio of the energy 

dissipated over the fracture toughness the is given as 

[11]: 

 

)d(11===d d −
∆

−Ξ
o

c

e GA

A λ
 (8)

 

Using Equations (7) and (8): 

 

of

o

eA

A

∆+−∆
∆

d)d(1

d
=d  (9)

 

2.2.2 Constitutive model for high-cycle fatigue 
 

Damage evolution that can be considered as the 

sum of the damage created by the quasi-static loads 

and the damage created by the cyclic loads: 

 

cyclicstatic
dt

d
dd=d=

d
&&& +  (10)

 

The first term in the right hand side of 

Equation 10 is obtained from the equations 
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presented in previous section, while the second term 

needs to be defined to account for cyclic loading.  

 

The evolution of the damage variable, d , is 

related with the surface crack growth rate, 
dN

dA
 as 

[11]: 

 

N

A

AN ∂
∂

∂
∂

∂
∂ d

d

d
=

d
 (11)

where 
d

A  is the damaged area, and 
N

A

∂
∂

d  is the 

growth rate of the damaged area. The term 
d

d

A∂
∂

 can 

be obtained from (9): 

 

of

of

eAA ∆∆
∆+−∆

∂
∂ 2

d

]d)d(1[1
=

d
 (12)

 

 

Determination of the growth rate of the damaged 

area as a function of the number of cycles 

 

Under cyclic loading, the damaged area grows 

as the number of cycles increase: after N∆  cycles, 

the damaged area ahead of the crack tip increases by 

dA∆ . It is assumed that the increase in the crack area 

A∆  is equal to the increase in the amount of 

damaged area. Therefore, the surface crack growth 

rate can be assumed to be equal to the sum of the 

damaged area growth rates of all damaged elements 

ahead of the crack tip: 

 

N

A

N

A
e

CZ
Ae ∂

∂
∂
∂

∑
∈

d=  (13)

 

where eA
d
 is the damaged area of one element and 

the term CZA  is the area of the cohesive zone. 

Taking 
N

A

∂
∂ d  as the mean value of the damaged area 

growth rate 
N

Ae

∂
∂

d  of the elements over the cohesive 

zone, and assuming that the mean area of the 

elements in the cohesive zone is eA , Equation 13 

can be written as: 

 

N

A

A

A

N

A

N

A
e

CZ

e

CZ
Ae ∂

∂
∂
∂

∂
∂

∑
∈

dd ==  (14)

where the ratio 
e

CZ

A

A
 represents the number of 

elements spanning the cohesive zone. Rearranging 

terms in Equation 14, the surface damage growth 

rate can be written as: 

 

N

A

A

A

N

A

CZ

e

∂
∂

∂
∂

=d  (15)

Evolution of the damage variable under cyclic 

loading 

 
Using Equations 12 and 15 in Equation 11 the 

evolution of the damage variable as a function of the 

number of cycles is given as: 

 

N

A

AN of

of

CZ
∂
∂

∆∆
∆+−∆

∂
∂ 2)d)d(1(1

=
d

 (16)

 

Under plane stress loading conditions, the area 

of the cohesive zone under mixed mode loading is 

given as: 

 

( )
2

max

22

1122

)(
1

1
=

oCZ

G

E

E
BB

Q

En
bA

τπ 










+−+

 (17) 

 

where maxG  is, for each integration point, the 

maximum energy release rate in the loading cycle, 
oτ  is the interfacial strength, n is a material 

parameter that defines the tractions’ distribution 

ahead of the crack tip [12], B is the mixed-mode 

ratio, 

 

III

II

GG

G
B

+
=  (18)
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and Q is an elastic constant that reads: 

 

12

22

21

2

1

11

222
2

1

G

E

E

E
Q +

















−







= ν  (19)

 

The parameter b is the width of the 

delamination front. In the implementation in a Finite 

Element code, the parameter b is assumed to be 

equal to the characteristic length of the element. 

 
Crack growth rate 

 
The surface crack growth rate under fatigue 

loading, 
N

A

∂
∂

, is a load, geometric, and material-

dependent characteristic that can be related to the 

Paris Law multiplying it with the crack front width: 

 

N

a
b

N

A

∂
∂=

∂
∂

 (20)

 

where 
N

a

∂
∂

 represents the growth rate. The typical 

pattern of the crack growth rate is shown in Figure 2. 

 

 
Figure 2. Typical crack growth rate regions. 

 

 

In region I, crack growth is not observed if the 

maximum energy release rate is smaller than the 

fatigue threshold of the energy release rate, thG . In 

region III, the crack growth rate increases because 

the maximum energy release rate approaches the 

fracture toughness. Tearing fracture controls the 

crack growth rate in region III instead of fatigue 

propagation. 

The crack growth rate 
N

a

∂
∂

 used in the fatigue 

damage model, Equation 20, is defined as a 

piecewise function defined as: 

 






















 ∆

∂
∂

otherwise,0

<<,

=

max

cth

m

c

GGG
G

G
C

N

a
 (21) 

 

where C , m  and cG  are parameters that depend on 

the mode-ratio.  

 

Defining the load ratio, R  as 
max

min
2 =

G

G
R , the 

variation of the energy release rate is given as: 

 

)(1
)(

2
= 2

2max

RG
of

f

o

o

−








∆−∆
−∆+∆∆ λτ

 (22)

 

The material parameters, thGmC ,,  used in 

Equation 21 depend on the mode ratio. In Mode I 

loading, the crack growth rate parameters are 
I

C , 

Im , and thGI . For Mode II loading, the crack growth 

rate parameters are IIC , IIm , and thGII . Under 

mixed-mode loading, the crack growth rate 

parameters C , m , and th
G  are given as [13]: 

 

I

II

2

II

m

II

I
logloglog=log

CC

C

G

G
C

G

G
CC

mTT









+








+  (23)

2

II

mIII

II

mI
)(= 








−−+








+

TT
G

G
mmm

G

G
mmm  (24)

 

where 
m

C  and 
m

m  are mode-ratio material 

parameters that must be determined by curve-fitting 

experimental data. 
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The dependence of the energy release rate 

threshold is given as [11]: 

 

( )
2

IIII
=

η









−+

T

shear

thththth
G

G
GGGG  (25)

   

where 2η  is a material parameter obtained from a 

curve-fit of experimental results. 

 

2.2.3 Cycle jump strategy 

 
For high-cycle fatigue, a cycle-by-cycle 

analysis becomes computationally intractable. 

Therefore, a cycle jump strategy needs to be 

implemented in the finite element model 

 
The cycle jump strategy proposed computes 

the damage variable J

i
d  at an integration point J  

after i
N  cycles using the quasi-static constitutive 

equations. The predicted evolution of the damage 

variable with the number of cycles, 
N∂

∂d
, is 

calculated using Equation 16. The damage variable 

at an integration point J  after iN∆  cycles is: 

 

i

J

iJ

i
i

Ni
N

N

J ∆
∂
∂

+∆+

d
d=d  (26)

 

To determine the number of cycles iN∆  that 

can be skipped with a controlled level of accuracy, 

the following equation is used: 

 









∂
∂

∆
∆

N

N

J

i J

i

max

d
max

d
=  

(27)

 

where maxd∆  is a small pre-established value.  

 

 

 

 

 

 

3 Results  

 

The present model is implemented as a user-

written finite element in ABAQUS  [6] by adding 

the fatigue damage model to the constitutive 

behavior of a cohesive element previously 

developed [4,5]. 

Simulations of Mode I, Mode II and Mixed-

Mode delamination tests were conducted to 

demonstrate that when the constitutive damage 

model is used in a structural analysis, the analysis 

can reproduce the response of the test specimens 

without the use of any model-specific adjustment 

parameters. 

The finite element model is composed of 4-

node plane strain elements for the arms, which are 

connected by 4-node cohesive elements 

representing the interface. Two elements are used 

through the thickness, of each arm. The length of 

the element is 0.05mm The details of the finite 

element model and the boundary conditions used in 

the simulations can be found in reference [11].  

The material properties used in the simulations 

are obtained from references [14,15] and using 

Equations (23-25). The data introduced in the FEM 

ara summarized in Tables 2 and 3. 

 

 

Table 2.  Static properties of HTA/637C 

carbon/epoxy laminates [14,15]. 

 
E11 

(GPa) 
E22= E33 

(GPa) 
G12= G13 

(GPa) 
G23 

(GPa) 

120 10.5 5.25 3.48 

    

ν12= ν13 ν23 η  

0.30 0.51 1.45  

    

GIc 
(kJ/m2) 

GIIc 
(kJ/m2) 

το
2= το

1 
(MPa) 

το
3 

(MPa) 

0.260 1.002 30 30 
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Table 3.  Fatigue properties of HTA/637C 

carbon/epoxy laminates [14,15]. 

 
CI 

(mm/cycle) 
CII 

(mm/cycle) 
Cm 

(mm/cycle) 

0.0308 0.149 22904 

   

mI mII mm 

5.4 4.5 4.94 

   

GIth 
(kJ/m2) 

GIIth 
(kJ/m2) 

η2 

0.060 0.100 2.73 

 

 

3.1. Simulation of Mode I delamination test 

 

The results obtained for the mode I simulation 

and the experimental data are shown in Figure 3. It 

can be observed that the constitutive model 

accounts for all three regions of fatigue crack 

growth. In region II, where crack growth rates 

follow the Paris Law, it is observed that a good 

agreement between the predictions and the 

experimental data is obtained. In region I there is 

negligible crack growth rate for small values of the 

normalized energy release rate and the numerical 

data follows the trend of the experimental data. A 

significant difference between the numerical and 

the experimental data is observed in region III. One 

of the reasons for this difference is that the crack 

growth rates present in region III are very high and, 

therefore, a low-cycle instead of a high-cycle 

fatigue model is more appropriate for this region. 

However, in spite of this difference, the model can 

also predict Region III crack growth rate, where the 

Paris Law equation is not valid. 
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Fig. 3. Mode I crack growth rate. 

 

The evolution of the crack tip position with the 

number of cycles for a normalized energy release 

rate of 40% is shown in Figure 4.  
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Fig. 4. Crack growth with the load cycles. 

 

The model can be used to predict delamination 

onset. The number of cycles to decrease the global 

compliance of the DCB specimen for different levels 

of the maximum applied energy release rate is 

shown in Figure 5. 
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Fig. 5. Load cycles to a decrease of 1% the 

global compliance of the DCB test. 

 

Several DCB tests were simulated to verify the 

sensitivity of the model to the load ratio. The 

results obtained from the simulations are shown in 

Figure 6 where it can be observed that higher load 

ratios decrease the crack growth rate. 
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Fig. 6. Load ratio effect on the mode I crack 

growth rate. 

 

The sensitivity of the constitutive model to the 

load ratio is an asset of the model. The sensitivity 

of the propagation rate to the load ratio derives 

directly from the quasi-static model rather than 

from a fatigue model defined as a function of the 

load ratio. 

 

 

 

 

3.1. Simulation of Mode II delamination test 

 

Several tests were conducted to simulate the 

crack growth rate under Mode II loading for 

different ranges of the energy release rate. 

Experimental data on fatigue driven delamination 

growth reported in [14,15] was selected for 

comparison. 

For pure Mode II, the specimen was loaded 

using the four point End Notched Flexure (4ENF)  

 The finite element model used was similar to 

that used in the simulation of the Mode I. 

The results obtained from the simulations and 

the experimental data [14] are shown in Figure 8. A 

good accuracy between the experimental and 

numerical data is observed. The numerical results 

are in a better agreement with the experimental 

data that those presented in [11]. The difference is 

on the better prediction of the length of the 

cohesive zone taking into account the orthotropy 

effects on the relation between the stress intensity 

factors and the energy release rate. 
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Fig. 8. Comparison of the experimental data 

with the crack growth rate obtained from the 

numerical simulation for a Mode II 4ENF test.  
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3.3. Simulation of mixed-mode loading 

 

 Several tests were conducted to simulate the 

crack growth rate under mixed-mode loading with   

for different energy release rates. Experimental 

data on fatigue driven delamination growth 

reported in [14] was selected for comparison. The 

dimensions and the material of the specimen are 

the same used for the DCB specimen described 

above. 

The finite element model used was similar to 

that used in the simulation of the Mode I test. 

The results obtained from the simulations and 

the experimental data [14] are shown in Figure 9. 

As in the pure mode tests, a good accuracy between 

the experimental and the predicted numerical data 

is observed.  

 

 
Fig. 9. Comparison of the experimental data 

with the crack growth rate obtained from the 

numerical simulation for a mixed-mode test.  

 

 

3 Conclusions 

 

A damage model suitable for both quasi-static 

and high-cycle fatigue delamination propagation was 

developed. The evolution of the damage variable 

was derived by linking Damage Mechanics and 

Fracture Mechanics, thus establishing a relation 

between damage evolution and crack growth rates. 

The damage evolution laws for cyclic fatigue were 

combined with the law of damage evolution for 

quasi-static loads within a cohesive element 

previously developed by the authors. 

Simulations over specimens under Mode I, 

Mode II and mixed-mode loading were carried out. 

It is observed that the obtained results reproduce the 

three regions of the typical fatigue crack growth. In 

region II, where crack growth rates follow the Paris 

Law, it is observed that a good agreement between 

the predictions and the experimental data is obtained. 

In region I there is negligible crack growth rate for 

small values of the normalized energy release rate 

and the numerical data follows the trend of the 

experimental data. A significant difference between 

the numerical and the experimental data is observed 

in region III. One of the reasons for this difference is 

that the crack growth rates present in region III are 

very high and, therefore, a low-cycle instead of a 

high-cycle fatigue model is more appropriate for this 

region. However, in spite of this difference, the 

model can also predict region III crack growth rate, 

where the Paris Law equation is not valid. 

Moreover, the results obtained from the 

simulations with different load ratio show that the 

model is sensitive to the load ratio. The higher load 

ratios the lower crack growth rate. 

The model can be used to predict fatigue 

delamination onset, predicting the number of cycles 

to get a certain reduction of the global compliance of 

the specimen. The Gmax-N curve for a decrease of 

1% the global compliance has been obtained from 

the Mode I simulations.  

In summary, the model was able to reproduce 

the Paris Law growth rate without the need of any 

additional adjustment parameters. Moreover, the 

model accounts for the energy release rate thresholds 

preventing crack growth for smaller values of the 

energy release rate. Unlike other approaches 

proposed in the literature, where the dependence on 

the load ratio, R, is introduced through the definition 

of R-dependent Paris Law parameters, the effects of 

the load ratio on the analysis results is inherent to 

the formulation. The model is able to predict the 

crack growth rates in all regimes of propagation and 

the results compare favorably with the experimental 

data, including the negligible crack growth rates for 

small values of the normalized energy release rate 

and the sensitivity to the mode and load ratio. 
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