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Abstract  

A simple model that represents interface 

elements subjected to fatigue loading is proposed 

and used to evaluate three different constitutive laws 

as well as three different damage definitions.  The 

three constitutive laws are bilinear, third-order 

polynomial and linear-polynomial while the damage 

definitions are based on the degradation of stiffness 

and the energy consumed. 

The behaviour of the constitutive laws and 

damage formulations has been found to be similar 

but with some variations in their sensitivity to the 

size of the elements and to the number of cycles 

applied in each load step.  The results confirm that 

the more accurate results are found for smaller 

values of these two variables. 

 

 

1 Introduction  

Because of their high strength-to-weight ratios 

the use of laminated composite materials in 

airframes, for both civil and military aircraft, has 

become more extensive in the last few years and this 

is a trend that will continue in the foreseeable future. 

One of the most important failure mechanisms 

of composite materials is delamination.  This can 

occur due to manufacturing defects, impacts on the 

surface, edge effects, fatigue loading, etc.  This type 

of failure can make a component lose its strength 

and/or stiffness and eventually lead to failure. 

The conditions under which some aircraft 

components operate, such as the blades of a 

helicopter, are known to cause composites to fail due 

to fatigue loading.  Since failure of these 

components can result in catastrophe it is very 

important to be able to predict life spans. 

This can be achieved either by experimentation 

or by doing computer simulations.  Because 

experimentation tends to be a lengthy and expensive 

process, in recent years a lot of emphasis has been 

placed on computer simulation.  [1-4] 

One of the methods that have been proposed 

for predicting delamination is using Finite Element 

Analysis (FEA) with interface elements located 

between adjacent layers of the composites being 

modelled.  The interface element is defined as a 

zero-thickness medium that ensures stress and 

displacement transfers from one composite ply to 

another.  An interface constitutive law is required to 

establish the behaviour of the element.  [5] 

The simulation of fatigue-driven delamination 

in laminated composites is a relatively new field of 

research.  One approach is to use interface elements 

that have constitutive laws that allow fatigue 

degradation to occur.  [6-8] 

Since the FEA of fatigue-induced delamination 

can be relatively costly in terms of time and 

computing power a very simple model is proposed 

as a way to quickly evaluate and develop different 

interface element constitutive laws and fatigue 

damage formulations. 

2 Implementation  

2.1 Model description  

The model, shown in Figure 1, resembles a ply 

of laminated composite attached to a fixed surface 

by means of springs, which act as interface 

elements, located at constant intervals (∆l).  This 

ply, of width W, is attached along one of its edges to 

a cylinder of radius (R) to which a certain moment 

(Ma) is applied.  The applied moment makes the 

cylinder rotate and the springs are degraded 

accordingly.  The springs are fixed to the ‘ground’ 

and their connection with the cylinder is constrained 

in such a way that the springs are always vertical 

independently of the rotation of the cylinder.  When 

a spring has completely degraded it can be said that 

delamination growth has occurred.  The behaviour 

A SIMPLE MODEL FOR THE EVALUATION OF FATIGUE 

DEGRADATION LAWS FOR INTERFACE ELEMENTS 
 

Carlos A. López-Armas*, Ugo Galvanetto* and Paul Robinson* 

*Department of Aeronautics, Imperial College, London, U.K.  

 

Keywords: fatigue; delamination; interface elements 



Carlos A. López-Armas, U. Galvanetto and P. Robinson  

2 

of the degradation of the springs is ruled by the 

interface constitutive law being used. 

The critical moment (Mc) is defined as the 

moment required to degrade completely the first 

spring and if the moment applied is kept constant 

then this critical moment is enough to break all 

springs.  If we equate the work done by the critical 

moment over the change in rotation (∆θ) to the 
energy consumed as the crack advances through the 

area defined by ∆θR·W at an interface with a critical 

energy release rate (Gc)  we have 

 RWGM cc θθ ∆=∆     (1) 

which can be rewritten as 

 RWGM cc =       (2) 

 
Fig. 1.  Model representation. 

 

In Figure 2 a typical static response of the 

model is shown and it can be seen how as the 

applied moment is increased the rotation of the 

cylinder is increased too until a critical angle (α) is 
reached at which the applied moment becomes 

critical and cannot be increased any more. 
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Fig. 2 Typical static response of the model 

 

The critical angle (α), at which the first spring 
fails, is related to the maximum relative 

displacement of a spring when it fails (δc) and is 

given by 

 






 −
= −

R

R cδ
α 1cos     (3) 

  If a moment Ma is applied to the cylinder such 

that 

 ca MM <      (4) 

the cylinder will rotate from the origin a given 

amount θ<α. 
In Figure 3 it can be seen that the angle (ωi) 

and the displacement (δi) for any spring at any given 

rotation (θ) can be obtained from 

 






 −
= −

R

xR i

i

θ
ω 1sin     (5) 

 ( )ii R ωδ cos1−=     (6) 

where xi is the distance from the initial position of 

the cylinder to the location of the spring. 

 
Fig. 3.  Angle, displacement and distance of a spring 

 

Once the displacement is known, the stress of 

the spring (σi) can be obtained by using any of the 

interface constitutive laws.  Then the reaction force 

in the spring (Fi) will be 

 lWF ii ∆= σ      (7) 

and the distance and the moment generated by the 

spring (Mi) are computed using 

 ii xRd −= θ      (8) 

 iii dFM =      (9) 

The total moment (Mt) can be obtained by 

adding all the active springs 

 ∑=
n

it MM
1

              (10) 

and by comparing it with the desired applied 

moment (Ma) it can be determined if the rotation 

applied (θ) is the correct one and if not modify it and 
recalculate everything again. 

Once that static equilibrium has been reached 

the fatigue loading procedure begins and it follows 

the same strategy described above, the only 
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difference being the change in the damage 

formulation which is now the combination of two 

terms the static and the fatigue one. 

 
Fig. 4 Flow chart. 

2.2 Interface static load constitutive laws 

Three different interface constitutive laws were 

implemented in the model: bilinear, third-order 

polynomial and linear-polynomial.  The same values 

were used for all computations and are shown in 

Table 1. 
 

2.2.1 Bilinear law 

The bilinear constitutive law for interface 

elements proposed by Alfano and Crisfield [6], 

shown in Figure 5, was initially used to define the 

properties of the springs in the simple cylinder 

model. 

 
Fig. 5.  Bilinear interface law 

 

In the bilinear law when a relative 

displacement (δ) below the elastic limit (δ0) is 
applied a linear-elastic behaviour occurs: 

 δσ K=   if 0δδ ≤          (11) 

where the high penalty stiffness (K), used to 

approximate the state of the interface for which a 

non-zero stress corresponds to a zero relative 

displacement, is defined as 

 
0

0

δ

σ
=K               (12) 

When the elastic limit value is reached, 

corresponding to the maximum stress value (σ0), the 

interface element starts to be damaged or degraded 

until it reaches a critical displacement value (δc).  

This damage value (D) effectively reduces the 

stiffness: 

( ) δσ KD−= 1   if cδδδ <<0  (13) 

where the damage is given by 










−







 −
=

0

0

δδ

δ

δ

δδ

c

cD  if cδδδ <<0  (14) 

and finally the element fails when δ reaches or 
exceeds δc: 

 0=σ    if δδ ≤c          (15) 

In Figure 5 we can see how the δ and σ can be 
related in a non-linear fashion for Mode I (opening).  

The area under the curve represents the critical 

energy release rate (Gc) for Mode I and its value is 

given by 

 
2

0σδ c
cG =               (16) 

δ0 1.00x10
-6
 mm 

σ0 30 N/mm
2
 

Gc 0.260 N/mm 

∆l 1.00x10
-2
 mm 

R 100 mm 

W 1 mm 

 
Table 1.  Values used in the computations. 

 

2.2.2 Third order polynomial law 
 

This interface constitutive law, proposed by 

Tvergaard [9] and adapted by Pinho et al. [10] to 

interface elements, is characterised for not having 

any discontinuities as opposed to the previous one 

and that the slope at the failure of the interface 

element is zero.  As the name implies the shape of 

this interface constitutive law is a curve given by the 

following third-order polynomial function: 

cc δ

δ

δ

δ
σσ

2

0 1
4

27








−=  if cδδ ≤          (17) 
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where the value of σ0 corresponds to a value of 

 
3

cδ
δ =               (18) 

 
Fig. 6.  Third order polynomial law 

 

In order to express Equation 17 in the same 

form as Equation 13 the damage (D) is defined as 

2

2 







−=

cc

D
δ

δ

δ

δ
  if cδδ ≤          (19) 

and the stiffness (K) is found to be 

c

K
δ

σ 0

4

27
=    if cδδ ≤          (20) 

The critical energy release rate is also given by 

the area under the curve, as shown in Figure 6, and 

its value corresponds to 

 0
48

27
σδ ccG =               (21) 

2.2.3 Linear-polynomial law 
 

This law, proposed by Pinho et al. [10], can be 

defined as a combination of the two previous ones. 

It is similar to the bilinear interface constitutive 

law in the linear-elastic behaviour before damage 

initiation and it is similar to the third –order 

polynomial one in the zero slope value both at the 

initiation of damage and at the failure of the 

interface element by using a high-order damage 

variable.  It is given by 

0

0

0

2

0

0 321 δ
δδ

δδ

δδ

δδ
σ K

cc 
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+=       (22) 

for values of δ between δ0 and δc. 

 
Fig. 7.  Linear-polynomial law 

 

If, again, this law is expressed in the same 

form as Equation 13 then the  damage (D) for values 

of δ between δ0 and δc is given by 
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00

δδ

δδ

δδ

δδ

δ

δ

cc

D   (23) 

and the value of Gc is given by Equation 16. 

2.3 Alternative static damage formulations 

The static damage formulations of the interface 

constitutive laws that have been discussed are all 

based on the degradation of the stiffness of the 

element. 

Two additional different static damage 

formulations were proposed and investigated for the 

bilinear interface constitutive law. 
 

2.3.1 First energy based static damage formulation 
 

An alternative bilinear constitutive law has 

been proposed in which damage is now a function of 

the area covered by the triangle generated by 

connecting the origin, δ0,σ0 and δ,σ as it can be seen 
in Figure 8.   This area will have a value of zero, and 

thus no damage, for values of δ lower that δ0 and 
will increase linearly as δ increases until it reaches 
δc.  Damage (D) is defined as the ratio between the 

‘used’ area, as shown in Figure 8, and the total area 

(Gc) and is given by the following relationship: 

0

0

δδ

δδ

−

−
=

c

D   if cδδδ <<0             (24) 
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Fig. 8. First energy based damage formulation 

 

Since the growth of damage is a linear function 

of δ, the interface constitutive law can be 

reformulated as 

( ) 01 σσ D−=   if cδδδ <<0             (25) 

2.3.2 Second energy based static damage 

formulation 
 

A different damage formulation can be 

proposed where the damage (D) is a function that 

mirrors the behaviour of the energy consumed 

during static delamination.  This is done by 

comparing the dark area with the total area, as 

shown in Figure 9.  

 
Fig. 9.  Energy based damage formulation 

 

The damage (D) is now defined as 










−

−







 −
−=

0

1
δδ

δδ

δ

δδ

c

c

c

cD   if cδδδ <<0    (26) 

and the interface constitutive law can be rewritten as 

( ) 








−
−=

δδ

δ
σσ

c

cD 01         if cδδδ <<0    (27) 

3 Fatigue damage formulations 

The scheme for introducing fatigue damage 

into the interface element being investigated is based 

on an exponential law (Peerlings) [11] which has 

been used with success by Robinson et al. [7] and 

Muñoz et al. [8] for fatigue degradation of bilinear 

interface elements. 

3.1 Fatigue damage formulations based on an 

exponential law 

In order to combine the stress/relative 

displacement relationship of the previous section 

with a fatigue model, the rate of damage (∂D/∂t) is 

split into the sum of its static and fatigue 

components: 

 
t

D

t

D

t

D fs

∂

∂
+

∂

∂
=

∂

∂
             (28) 

The static component is defined depending on 

the interface constitutive law and the damage 

formulation used to compute it, while the fatigue 

component is defined by using an exponential law. 
 

3.1.1 Stiffness based  fatigue damage formulation for 

the bilinear law 
 

Rearranging Equation 4 

 
δδδ

δδ

δδ

δ 1

0

0

0 −
−

−
=

c

c

c

c
sD             (29) 

and by differentiating Equation (29) with respect to 

time the static component is found 

tt

D

c

cs

∂

∂

−
=

∂

∂ δ

δδδ

δδ
2

0

0 1
 for 0≥

∂

∂

t

δ
     (30) 

By integrating Equation (30) over a certain 

number of loading cycles (∆N) the rate of damage on 

a cycle based formulation is obtained 

( )

( )

( )

( )

∫∫
∆+∆+

∂

∂

−
=

∂

∂
NNt

Nt c

c

NNt

Nt

s dt
t

dt
t

D δ

δδδ

δδ
2

0

0 1
       (31) 

where t(N) is the time corresponding to the end of 

cycle N and t(N+∆N) is the time corresponding to 

the end of cycle N+∆N, which yields 

NN

Nc

cNN

NsD

∆+
∆+









−

−
=

δδδ

δδ 1

0

0             (32) 
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−
=−
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NNNc

c

NsNNs DD
δδδδ

δδ 11

0

0       (33) 
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The exponential law used to find the fatigue 

component of the rate of damage is a modified 

version of Peerlings’ law [7] and is given by 

 







=

∂

∂
=

a

Df

f Ce
t

D
D

δ

δλ             (34) 

where δa is a displacement quantity introduced for 

dimensional reasons and β, λ and C are parameters 
whose values are determined by studying the 

influence of their variation. 

Peerlings’ law allows the damage to grow with 

the number of cycles even if the initial damage at the 

interface is zero. 

If Equation (34) is rearranged and integrated 

over one cycle 
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D d
C

dDe
δ

δ
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λ δδ
δ

            (37) 

In Equations (36) and (37) only the fatigue 

component of the damage is assumed to vary and 

therefore dDf=dD.  If the derivative ∂Df/∂N does not 

change rapidly with increasing cycles, as is usual for 

high cycle fatigue, then it can be written 

( ) ( ) N
N

D
NDNND

f

ff ∆
∂

∂
+≅∆+             (38) 

and therefore for ∆N=1 
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            (39) 

Because the fatigue law is valid only if the rate 

of damage is larger or equal to zero, it is possible to 

find the formal equation for the rate of damage due 

to the fatigue phenomenon 
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1
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e

C
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   (40) 

where δmax is the maximum value of the 

displacement component δ during the cycle and δmin 
the corresponding minimum value. 

In the present formulation the value of δa was 

chosen as the value of the relative displacement at 

failure (δc).  The value of δc depends on the critical 

energy release rate and the maximum stress defined 

for the interface element in the numerical model. 

Assuming for simplicity that δmin is zero and 
that δmax is δ, Equation (40) can be rewritten as 
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            (41) 

Following Equation (28), by adding Equations 

(33) and (41) the damage rate is found to be 

β

λ

δ

δ
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δδδ

δδ
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c e
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and therefore 

( ) ( ) ∫
∆+

∂

∂
+=∆+

NN

N
dN

N

D
NDNND               (43) 

and defining the fatigue component as a function 

G(D,δ) 

( ) ( ) ( )∫
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N
c

c dNDG
N

NDNND δ
δ

δδδ

δδ
,

1
2

0

0  

for 
NNN δδ ≥∆+
              (44) 

The integration of the static damage term in 

Equation (44) is given by Equation (33).  The 

integration of the fatigue damage component can be 

accomplished observing that, for the continuity of D, 

there is a real number m, with 0≤µ≤1, such that 

( ) ( )µµ δδ ,, DNGdNDG
NN

N
∆=∫

∆+

            (46) 

where µD and µδ  are given by 

( ) ( ) ( )NNDNDD ∆++−= µµµ 1             (47) 

( ) ( ) ( )NNN ∆++−= µδδµδ µ 1             (48) 

In all the computations that have been done the 

value of µ=0.7 has been taken from [7] giving 
satisfactory results, but the problem of finding an 

optimal value of µ is not trivial. 
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The damage growth rate is given by 

4444 34444 214444 34444 21
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1
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11  

for 
NNN δδ ≥∆+               (48) 

and since the damage variable appears on both sides 

of Equation (48) its value must be determined 

iteratively.  It can be rewritten as 

0
1

11
1

0

0 =








+
∆−








−

−
−−=

+

∆+
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4444 34444 214444 34444 21
fatigue

c

D

static

NNNc

c
NNN e

C
NDDH

β

µλ

δ

δ

βδδδδ

δδ
µ

                (49) 

The residual function is defined as 

( ) ( )( )NNNNDHH ∆+∆+= δ,             (50) 

so that the new value of damage (D) can be found by 

applying the standard Newton-Raphson method to 

Equation 50.  It is mentioned in [7] that the success 

of the iterative procedure depends on the values of 

the parameters defining the damage due to fatigue: 

β, λ and C.  A fixed value of λ=0.5 was adopted for 
all of the cases analysed [7].  The values of β and C 
used in the computations are shown in Table 2. 

 

 β C 

Bilinear law, stiffness 2.0 2x10
-6
 

Polynomial law, stiffness 5.5 2.94x10
-1
 

Bilinear law, area 2.9 6.35x10
-2
 

Bilinear law, energy 2.65 2.78x10
-2
 

 
Table 2.  Coefficient values for different schemes 
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Fig. 10.  Fatigue behaviour of springs 

 

The typical response of a bilinear interface 

element under fatigue loading is shown in Figure 10, 

where the key indicates the applied cyclic moment 

as a percentage of the static maximum moment to 

cause delamination growth. 

3.1.2 Stiffness based  fatigue damage formulation for 

the polynomial law 

 

After finding the different fatigue damage 

formulations for the bilinear law, the same is done to 

the polynomial law by following the procedure uses 

in section 3.1.1 and the static component is 
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NNN δδ ≥∆+
              (51) 

to be substituted in Equation (49). 
 

3.1.3 First energy based  fatigue damage 

formulation for the bilinear law 
 

Following the same procedure the static 

component of the damage growth rate is found to be 

 
00 δδ
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−
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which is substituted in Equation (49). 
 

3.1.4 Second energy based  fatigue damage 

formulation for the bilinear law 
 

Again, the same procedure is followed and the 

static component for this damage formulation is 

given by 

( ) ( )
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2

00
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222

δδδ

δ

δδ

δ

δδδ

δ

δδ

δ

cc

N

c

N

cc

NN

c
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NsNNs DD

for 
NNN δδ ≥∆+
              (53) 

for its substitution in Equation (49). 

4 Results 

The model has been used to investigate the 

effectiveness of the methods proposed to introduce 

fatigue damage in interface elements.  The 

sensitivity of the predicted response has been 

examined for a number of parameters including 

coefficients in the damage formulations themselves, 

the spacing of the spring elements (∆l) and the 

number of cycles applied for each load step (∆N). 

4.1 Comparison with experimental results  

Figure 10 shows that the bilinear interface 

element with fatigue damage according to Peerlings’ 

Law can reproduce the Paris Law response 

experimentally observed in delamination growth in 
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polymer matrix composites.  The experimental data 

comes from the work of Asp et al.  [12] 

 
Fig. 10.  Paris plot with experimental and numerical 

results 

4.2 Influence of ∆∆∆∆l and ∆∆∆∆N  

Using the bilinear interface law, the slope 

(da/dN) computed for very small values of ∆N and 

∆l (∆N =100 cycles , ∆l =0.005 mm.) was used as a 

baseline, it is called the ‘exact solution’.  After a 

large number of results with different values of ∆N 

and ∆l were obtained, they were compared against 

the ‘exact solution’ and divided into ranges 

depending on the variation shown. 

In order to produce Figure 11, ∆N and ∆l were 

normalised by dividing them by the number of 

cycles required to break a spring (Na) and the length 

of the active zone (la) respectively.  The inverse of 

the ratio ∆N/Na is related to the number of 

increments needed to completely break the length of 

the active zone while the inverse of ∆l/la provides 

the number of elements in the active zone. 

There are some interesting features that can be 

observed in Figure 11.  The first one is the formation 

of vertical bands that change abruptly for small 

changes in values of ∆N/Na.  These bands go from 

‘good’ values of the slope, on the left, to ‘bad’ ones 

on the right, in which the slope computed is 

significantly different to the exact solution. 

The second feature that can be observed is the 

formation on the left side of the chart of some peaks 

of ‘bad’ results that blend into ‘better’ results as they 

move to the right of the chart.  As opposed to the 

vertical bands, these computed results are for values 

of the slope that are larger than the baseline.   
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Fig. 11.  Influence of ∆l and ∆N using the bilinear 

interface law with the stiffness degradation based damage 

formulation 
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Fig 12. Influence of ∆l and ∆N using the polynomial 

interface law with the stiffness degradation based damage 

formulation 
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Fig. 13.  Influence of ∆l and ∆N using the bilinear 

interface law with the area based damage formulation 
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Fig. 14 Influence of ∆l and ∆N using the bilinear interface 

law with the energy based damage formulation 
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It can also be seen that the central part of these 

peaks correspond to the results where there is an 

integer number of elements in the active zone.  For 

example, the large peak located at ∆l/la=0.25 

corresponds to 4 active elements.  Moving 

downwards it can be seen that the next peak 

coincides with ∆l/la=0.20 which corresponds to 5 

active elements and so on. 

An analysis was performed to understand the 

formation of these peaks and it showed that the 

number of elements in the active zone, a direct result 

of the value of ∆l chosen, has an influence in the 

accuracy of the results obtained.  It can be inferred 

from this analysis that in order to have reasonable 

results the model should have at least 5 elements in 

the active zone. 

The third feature that can be observed is the 

pattern of some radial lines that seem to come from 

the origin.  These lines are made of ‘better’ results 

that are embedded in zones with ‘worse’ones.  It 

should be highlighted that the slopes of these lines 

seem to roughly correspond to integer values, e.g. 1, 

2, 3, etc.  Also these lines blur into the peaks 

mentioned in the previous paragraph leaving us with 

zones of ‘good’ results being surrounded by ‘bad’ 

results. 

An analysis was made in order to understand 

the formation of the radial lines and it seems that a 

number of combinations for ∆N and ∆l are able to 

provide good results when they are not supposed to 

do so and it was concluded that this phenomenon 

occurred due to the way the problem is being 

modelled.   

The polynomial interface law coupled with the 

bilinear interface constitutive law was also used to 

study the influence of ∆l and ∆N in the model.  The 

results are shown in Figure 12. 

The first feature to be noticed is that the 

vertical bands related to the variations of ∆N/Na are 

compacted in respect to Figure 11 and this shows an 

increased sensitivity to variations in the values of 

∆N. 

The second feature that can be observed in 

Figure 12 is that there is also an increased sensitivity 

to variations in the values of ∆l.  This means than 

more elements are required in the active zone in 

order to provide reliable results. 

The presence of the radial lines whose slope 

values correspond to integers is very clear in Figure 

12 as well as the presence of ‘good’ results 

embedded in ‘bad’ results zones. 

Something that should be mentioned is that the 

values of the coefficients β and C varied greatly than 

with those used in the bilinear interface law as it can 

be seen in Table 2. 
It also must be mentioned that the length of the 

active zone using this interface constitutive law was 

significantly larger than the values obtained for the 

bilinear interface law using the three different 

damage formulations as it can be seen in Table 3. 

 
 la  

Bilinear law, stiffness 0.6675 mm. 

Polynomial law, stiffness 0.8750 mm. 

Bilinear law, area 0.6625 mm. 

Bilinear law, energy 0.6650 mm. 

 

Table 3.  Length of the active zone (la) for the different 

formulations that were tested. 

 

The influence of ∆l and ∆N using the two 

energy based damage formulations coupled with the 

bilinear interface constitutive law were also 

explored. 

In Figure 13 the influence of ∆l and ∆N under 

the first energy based damage formulation along 

with the bilinear interface law is shown.  It can be 

observed that the same features of Figure11, such as 

the vertical bands, peaks and radial lines, are present 

but with a relative increased sensitivity to the 

number of cycles (∆N) applied for every load step.   

For this formulation a large difference in the 

value of the coefficient C compared with the 

stiffness based one was found as well as a smaller 

difference for coefficient β as shown in Table 2.   
The length of the active zone for this damage 

formulation was very similar to the stiffness 

degradation based formulation as it can be seen in 

Table 3. 

The influence of ∆l and ∆N using the second 

energy based damage formulation combined with 

the bilinear interface law can be seen in Figure 14.  

It can be appreciated that all of the features 

previously discussed (vertical bands, peaks and 

radial lines) are present and that this figure is almost 

identical to Figure 13 and very similar to Figure 11.   

The values of the coefficients β and C used for 
this damage formulation were in the same order of 

magnitude than the ones used in the previous 

formulation as shown in Table 2.   

The length of the active zone for the second 

energy based damage formulation is very similar to 

the one of the other two formulations involving the 

bilinear interface law as shown in Table 3. 
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Conclusions 

A simple model that represents interface 

elements subjected to fatigue loading has been 

developed and validated. 

Three different constitutive laws for interface 

elements have been implemented in the model and 

analysed: bilinear, third-order polynomial and 

linear-polynomial with a stiffness degradation based 

damage formulation.  Also, two additional static 

damage formulations based on energy have been 

proposed and developed into fatigue loading ones. 

A study of the influence of ∆l and ∆N showed 

that the various interface laws and damage 

formulations exhibit a very similar pattern to that 

shown in Figure 11.  The figure confirms that the 

more accurate results are found for smaller values of 

∆l and ∆N.  Figures like this are currently being used 

to identify the combination of interface element 

formulation/fatigue damage degradation that is least 

sensitive to the values selected for ∆l and ∆N. 

The bilinear interface constitutive law coupled 

with the stiffness degradation based damage 

formulation has proved to be the least sensitive to 

variations in the values of ∆l and ∆N. 

The polynomial interface constitutive law has 

been found to be the most sensitive to changes in the 

values of ∆l and ∆N.  The length of the active zone 

(la) for this interface law was considerably larger 

than when using the bilinear one.  Also, the values 

of the coefficients β and C for this law were 

significantly different than the other ones. 

The two energy based damage formulations, 

coupled with the bilinear interface constitutive law, 

are similar to each other in the sensitivity to 

variations in the values of ∆l and ∆N, the values of 

the coefficients β and C required and in the length of 
the active zone, which is very similar to the value 

obtained when using the stiffness degradation based 

damage formulation and the bilinear interface 

constitutive law. 
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