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Abstract  

The forming simulation of biaxial woven 
fabrics is described in this paper. The simulation 
applies to a general surface defined numerically and 
for any choice of initial warp and weft paths.  

The yarn path between consecutive warp and 
weft crossover points or nodes is assumed to be a 
geodesic. The algorithm computes the location of the 
nodes by solving for the intersection of two geodesic 
paths of given lengths on the surface. 
 
 
1 Introduction 

This paper is concerned with the problem of 
forming biaxial preforms on generally complex non-
developable shapes from plane sheets. Simulation of 
forming processes of composite structures is 
necessary to verify the feasibility of the process for a 
given shape and also to locate the position of the 
reinforcements. The problem of mapping an initial 
plane, orthogonal network of inextensible fibers onto 
a given curved surface was first considered by 
Tchebychev [1]. He suggested a continuum model 
for cloth in which the yarns are continuously 
distributed and inextensible. More than half a 
century later, Mack & Taylor [2] proposed a more 
practical solution to the problem in the context of 
fitting woven cloth fabrics on a hemisphere. 
Subsequent authors [3, 4, 5, and 6] developed more 
general methodologies based on geometrical 
consideration and applicable for complex surfaces. 
The geometric models do not consider the 
mechanical properties of the fabrics. Fabric 
construction can have a significant impact on the 
deformed patterns. Several authors [7, 8, and 9] 
developed fabric mapping models based on fabric 
mechanics using FE techniques. Finite element 
based models simulate more realistically the forming 
processes as preform properties and specific 
boundary conditions are incorporated in the 

modeling. The main problem with FE based 
simulations is the CPU time which is of the order of 
hours while for geometric models typically CPU 
time is less than a minute.  

The model presented here, applied to woven 
fabrics, can be considered as part of the family of 
fishnet type algorithms. However in this paper the 
yarns are made to follow geodesic paths, between 
nodes, on the complex surface to improve the 
accuracy of forming coarse fabrics. 

Woven fabrics are composed of two set of 
interlaced yarns, the warp and the weft. The point of 
contact between a warp and weft is referred as node. 
In its un-deformed state, the warp and the weft yarns 
are perpendicular to each other. Woven fabrics 
undergo in-plane shear deformation and bending 
when forced to conform to a surface having double 
curvature. 
2 Forming Problem 

Forming biaxial preforms involves the 
mapping of an orthogonal network of yarns onto a 
3D surface. This is illustrated in Figure 1 below. 

 
Fig. 1. Fitting of Biaxial Preform on a Surface 

 
The forming problem as applied to woven fabrics is 
to locate the coordinates of the warp-weft 
intersection, i.e. nodes, on the 3D surface. In Figure 
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2 the coordinates of nodes A and B are known and it 
is required to determine the coordinates of point C 
on the surface with the condition that the lengths AC 
and BC are the same. Further the distances between 
the nodes are not changed by the mapping process 
which implies the assumption that there is no 
slippage between the warp and weft during the 
forming process. 
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Fig. 2. Adjacent Fabric Nodes 

Fishnet type algorithms assume that the paths AC 
and BC are straight lines. In this paper the paths AC 
are BC are assumed to be geodesics. 

3 Surface Definitions 

The surface is divided into a set of curvilinear 
coordinates (u, v) and a specific method is needed to 
define the surface in the regions between the input 
dataset that characterize the surface.The position 
vector of an arbitrary point on the surface in terms of 
Cartesian coordinates is: 
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The corresponding covariant components are: 
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where u and v are the curvilinear coordinates, gu and 
gv are covariant base vectors. In practical 
applications the surface is characterized by a given 
set of Cartesian coordinates. In between the known 

coordinates the surface is defined by a cubic 
Hermite interpolation. For example the x-coordinate 
is defined in equation (4). 
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HT is the transpose of matrix H. 
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The parameters s and t varies between 0 and 1 for 
the surface patch with vertices (xij, yij, zij) where 
indices i & j are either 0 or 1. The superscript in 
matrix X above refers to partial derivative of the 
Cartesian coordinate with respect to that parameter. 
4 Generating Geodesic Paths  

Given any two points on a surface there are an 
infinite number of paths that can link them. The path 
with the shortest length is a geodesic. On a plane 
surface the straight line and on a sphere the great 
circles are examples of geodesics. Geodesic paths on 
general complex surfaces can only be established by 
using numerical methods. Suppose a surface is 
described by curvilinear coordinates (u, v). Then the 
geodesic path from a given point in a given 
orientation is defined in equations (5) & (6) below. 
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To solve the nonlinear second order differential 
equations above, it is helpful to convert them to first 
order and then use numerical methods such as 
Runge-Kutta. 
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In general to solve the above set of first order 
differential equations (7) to (10) we need initial 
values for u, v, p and q i.e. at s = 0. The coordinates 
u and v define the starting point of the geodesic path 
while p and q define the geodesic direction on the 
surface. 
 
The Christoffel symbol is defined as follows: 
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where indices i ,j & k are either  of the curvilinear 
components u or v and  gk is the contravariant base 
vector. 
5 Computations of Initial Values of Geodesic 
Paths  

Suppose the direction of the geodesic is angle 
α to the constant v-curves, at the starting point. 
Consider vector δr of length δs along the constant 
local v-coordinate. Further consider vector dr of 
magnitude ds making an angle α with δr as shown 
in Figure 3. Vectors dr and δr can then be defined 
as in equations (12) and (13). 
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The length ds of vector dr, the displacement δu and 
the angle α are given. The objective is to determine 
the values du and dv, hence the ratio 
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Fig. 3. Orientation of Geodesic at Starting Point 
 
Taking the dot product of dr and δr we get: 
 

uFdvuduEdss δδαδ ...cos.. +=  (14) 
 
Taking the cross product of dr and du we get:  
 

udvFEGdss δαδ .sin.. 2−=  (15) 
 
where 
 

uu .gg=E   (16) 

vu .gg=F   (17) 

vv .gg=G   (18) 
 
Given a small value for δu:  
 

Eus .δδ =    (19) 
 
Given also the small value ds, the value dv can be 
computed from equation (15). By replacing the 
computed value of dv in equation (14), du can be 
worked out. Hence the initial values, p and q, 
can be calculated. 
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6 Initial Paths  

The computation of the image of a fabric node 
on the surface requires the positions of two known 
nodes on the surface. To initiate the forming 
simulation, two intersecting yarn paths are chosen 
on the surface. Generally the paths make an angle of 
90o at the intersection, which is the starting point of 
the forming process. This is illustrated in the 
schematic diagram in Figure 4. One set of lines, say 
the verticals, represent the warp while the 
horizontals are the weft. The specification of the 
initial paths would affect the degree of deformation 
of the fabric as it made to conform to the surface and 
also the positions, if any, of wrinkles. The initial 
paths divide the surface into four quadrants and the 
forming in each quadrant is independent of each 
other.  

Initial Path 2

Initial Path 1

Quadrant 2 Quadrant 1

Quadrant 4Quadrant 3

1 2 30 5

0

1

2

3

 
Fig.4. Initial Paths and Surface Quadrants 

 
The nodes on the initial paths are computed as 
equidistant points on the geodesic paths which are 
obtained by integrating equations (7) to (10). The 
selection of the paths is effectively a decision on the 
forming start point and the orientation (α and β) of 
the two geodesics with respect to one of the 
curvilinear coordinates. The forming process within 
say quadrant 1 then follows by the computing nodes 
sequentially along either warp or weft lines. 
7 Forming Algorithm  

The output of the forming algorithm is the 
angles α and β, i.e. the angles the geodesic paths of 
given length from A and B make with the curvilinear 
component u. The flowchart in Figure 5 illustrates 
the methodology used. 
 

Guess
values:
α, β

Numerical
Integration

of Geodesic
Equations

Compute
Distance
between

Geodesics End
Points

Within defined
precision?

Newton-
Raphson

Procedure

Improved
Initial

Values

Linear
Equations

Solver

StopYesNo

 
 

Fig. 5. Forming Algorithm 
 
The coordinates of the point intersection of the 
geodesic paths is the mapping of a fabric node on 
the surface. This known location is then used to 
locate subsequent nodes on the fabric and the 
process is repeated until the surface boundary is 
reached or some other termination condition is 
specified such as onset of wrinkling which occurs 
when angle between warp & weft is less than some 
value, which is a characteristic of the fabric. 
7.1 Estimates of Initial Values 

The computation time as well as whether the 
Newton-Raphson’s iteration will converge depend 
on the choice of guess estimates for the two initial 
values α and β.  
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Fig. 6. Estimates of Orientation of AC & BC 

 
With reference to Figure 6, the initial estimates of  α 
and β are the same as the orientation of geodesics 
A1A and B1B to the covariant vector gu, i.e. α1 and 
β1. 
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An improved estimate is provided by 
application of local Gauss-Bonnet Theorem [10] 
which relates the excess angle of a polygon 
bounded by geodesics on a surface to the 
Gaussian curvature and the area of the polygon. 
For example a better guess value for α is 
obtained as follows 
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where  
 
Ki is the Gaussian Curvature computed at the vertex 
of fabric unit cell. 
Ai is the area of the unit cell. 
 
The cells are numbered in the draping direction with 
the cell adjacent to the initial path being numbered 
one. A similar expression holds for angle β. 
8 Forming Examples  

Figures 7 and 8 show the yarns’ paths over a 
spherical surface and a complex part respectively. 
The colorbar indicates the values of the shear 
deformation in a fabric unit cell. Shear deformation 
is the angular change from the warp-weft angle in 
the plane cloth.  
 

 
Fig. 7.  Forming over a Spherical Surface 

 

 
Fig. 8.  Forming over a Complex Part 

 
Shear deformation is measured at a specific 

vertex for all the unit cells that make up the fabric. 
Positive shear deformation implies decrease of the 
angle between warp and weft while negative shear 
deformation indicates angular increase. 

In Figure 7 the surface is part of a sphere 
which has a constant positive curvature. The shear 
deformation is always positive and is highest at the 
furthest point from the simulation start position. 

The complex part of Figure 8 contains areas of 
positive and negative curvature. The blue areas in 
Figure 8 indicate negative curvature and negative 
shear deformation and the red areas illustrates a 
decrease in warp-weft angle at regions of positive 
curvature. 

 
9 Conclusions 

 
Fishnet type algorithms specify straight line 

distance between nodes such as B and C in Figure 1, 
effectively putting the yarn below a surface of 
positive Gaussian curvature. By reducing the fishnet 
interval to minimize this error one would actually be 
using a different material. The algorithm described 
here measures lengths on the surface and so this 
error which would be significant for sharp areas or 
for coarse material mesh, is completely avoided. 
Further to reduce computation time and the risk of 
non-convergence of forming over sharp areas, a 
method of estimating initial values for geodesic 
orientation, based on Gaussian curvature in that area 
has been implemented.  
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