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Abstract orientation angle continuously within the lamina.
Allowing the fibers to curve within the lamina
Manufacturing of high quality fiber-reinforced  constitutes an advanced tailoring option to account
composite structures with spatially varying fiber for non-uniform stress states in a continuous
orientation is possible using advanced tow- manner. By varying the stiffness properties of
placement machines. Changing the fiber orientation composite laminates from one point to another, the
angle within a layer produces variable-stiffness design space is expanded as compared to the
properties. Contrary to traditional composites with classical stacking sequence design problem. As a
straight fibers, this method allows the designer to consequence, stiffer and/or lighter structures lwan

fully benefit from the directional material propies obtained.
of the composite to improve laminate performance An intensive study of rectangular panels with
by determining optimal fiber paths. curvilinear fiber paths, termed variable-stiffness

In this paper, design tailoring for pressure panels, was carried out by Girdal et al. [1]. The
pillowing problem of a fuselage skin is addressed curvilinear paths in those studies were generated
using steered fibers. The problem is modelled as a from a base curve that changes its orientationeang|
two-dimensional plate using von Karman plate linearly from one end of the panel to the otherilevh
equations. The design objective is to determine the taking into account constraints on the radius of
optimal fiber paths over the panel for maximum curvature of the fiber paths. Despite the fact that
failure load. Different designs are obtained for linear fiber orientation variation represents omly
different loading cases. The results indicate twat limited class of spatially varying orientationsrlea
using steered fibers the pressure pillowing problem studies showed that significant improvements in the
can be alleviated, and the load carrying capacity o laminate response can be obtained for panels with
the structure can be improved compared to designs and without holes under compression and shear
with straight fibers. loads [2-4]. Investigation of the optimal desigos f

both constant and variable-stiffness rectangular
composite plates for minimum compliance was
performed by Setoodeh et al. [5]. In these latter
1 Introduction studies, the lamination parameters were used as
design variables instead of fiber orientation asgle

~ One of the primary advantages of using fiber- 5™ reducing the number of design variables.
reinforced laminated composites in structural desig Moreover, the formulation guaranteed that the

is the ability to change the stiffness and strergth  gqytion is optimal, benefiting from the fact thhe

the laminate by designing the laminate stacking oniimization problem is convex. Although the actual

sequence in order to improve its performance. This stacking sequence was unknown, the results showed
flexibility to design the stacking sequence of the 4t sybstantial improvements in stiffness can be
laminate is typically referred to as laminate tarig. gained by using variable-stiffness designs. In a
Traditionally, tailoring is achieved by keeping the follow-up work, the curvilinear fiber paths were

fiber orientation angle within each layer constant generated from the lamination parameter distriloutio
throughout a component resulting in constant- 6].

stiffness structure. One method of creating vaewabl A challenging problem in the aircraft structures
stiffness composite structure is by changing therfi 4550 ciated with thin-walled stiffened structurethis
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so-called pressure pillowing. Pressurized fuselages model, but in general, requires a two-dimensional
and fuel tanks are typical examples of structures i plate or shallow shell modelling under combined
which pressure pillowing is observed. In the calse 0 pressure and in-plane loads. Hence, in this pdgeer t
fuselages, the cabin pressure causes a significantproblem is modelled as a two-dimensional plate
pressure differential across the skin. An unstéfitn  subjected to pressure and in-plane loads. The
fuselage would carry this internal pressure load as optimization problem is formulated to determine the
shell in membrane response, like pressure vessels.optimal fiber paths over the panel for maximum
However, internal longitudinal and transverse failure load. For optimization purposes, it is oéat
stiffeners (stringers and frames as shown in Fig. 1 importance to select an efficient and fast methard f
are necessary to carry maneuver loads. The presencehe nonlinear analysis. Although the finite element
of these stiffeners prevents the fuselage skin from method is a powerful tool for structural analysis
expanding as a membrane, and the skin bulges, orproblems, the nonlinear nature of the problem at
“pillows”, within each panel bay under the actidh o hand makes the use of the finite element undesirabl
the internal pressure. When the skin is restrained due to excessive computational time required. i th
against out-of-plane expansion at the stiffener study, the plate problem is approximated using
locations, a bending boundary layer is formed. Rayleigh-Ritz method (R-R), and the nonlinear
Recently, design tailoring for pressure response is traced using normal flow algorithm [8].
pillowing using variable-stiffness concept has been
investigated by Alhajahmad et al.[7]. The pressure
pillowing problem was modelled as a one- 2 problem Formulation
dimensional clamped-clamped beam-plate in two ) ] ]
loading cases. The first case was a one-dimensional In this paper, a pressurized fuselage skin
plate subjected to pressure and the second ona was Pounded by two stringers and two frames is
one-dimensional plate under combined pressure andModelled as a two-dimensional plate. It is assumed
in-plane compressive loads. For both loading cases, that the skin is flat, balanced and symmetric
the optimal fiber paths along the beam-plate length laminate — with a  variable-stiffness  lay-up
for minimum weight subject to strength constraints [+8(X, Y)],. The laminate is loaded in two steps. In
were determined. It was shown, in this latter study the first loading step, a uniform pressupe is
that by using steered fibers the pressure pillowing applied, which is translated into two loads, axial

problem can be alleviated, and lighter laminates ca tensile loadF, and hoop tensile loaH,, calculated
be designed compared to designs with straight g5

fibers.
F, =—0D0, F, = pRa (1)

plate, respectively, andR is the radius of the

-
; [ & | fuselage. The pressure and hence the tensile loads
-\TN ~“"T” ey are incremented by means of a scaling fagtan
et ‘ ‘ ,

U
T 4 \7» - wherea andb are the length and the width of the

: s the first loading step. In the second loading step,
/ d d additional axial compressive Iong, which results

L

| from fuselage bending, is applied. This latter I@ad

J
i B, ;‘/ /«‘/ incremented by means of a scaling factpwhile
*\ %) ,’ ( / keepingl, fixed at the end of the first loading step.
2' . i é [ vl ﬂ In this work, two loading cases will be
i : w | J.—- investigated, a plate subjected to pressure ordy (n
Fig.1. Stiffened structure of a pressurized fuselag pressure-induced tensile loads), and a plate stedjec
(courtesy of Fiber Metal Laminates Center of Corapee) to a combination of pressure and in-plane tensile

loads applied in the first loading step besidesnan
For the analysis of the pressure pillowing plane compressive load which is applied in the
problem, the fuselage skin of a panel bay can be second loading step.
modelled using different levels of complexity.
Research reported in [7] used a simple beam-plate
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The panel boundary conditions are clamped at
(x = 0, x = @ simulating the panel edges at the
frame locations, and simply supportedyat=(0, y =
b) simulating the panel edges at the stringer
locations. The fuselage panel model is shown in Fig
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Fig. 2. Fuselage panel model

3 Analysis Formulation

Assuming that the plate is thin, such that the
Kirchhoff hypothesis is valid, the laminate strains
are expressed in the following form [9]

{e} ={e°}+ 2w} ®)

Where{so} and{:c} denote the mid-plane strains and
curvatures, respectively. In the moderately large
rotation case, according to the von Karman model,
the mid-plane strains and curvatures are given by

a3 uy
o ox 2\ 0x
Ex 0 2 3)
[} =]e0 L= 0L+1[0_W] (
dy 2\ dy
i ou’ oV’ owow
- 4+
dy O0x O0xady
_dw
2
W] |
- - w 4
{k}=1x, 1= o “)
Ko 0°w
oxoy

whereu’, V¥, andw are the mid-plane displacements.
Following the Rayleigh-Ritz procedure [10],
the total potential energy is given by

7=U-W 5)

whereU is the strain energy, allfis the potential
energy of the external loads.

For symmetric and balanced laminates, the
strain energy in terms of the mid-plane strains and
curvatures is given by

A7+ A(E)%+
2'6&252‘93 + A;e(ygy)z +
Dy ks + Dok +2D KK+

ab

o=1]]

dxdy (6)

2D16K Kyt 2D26K}/(xy+ D66K2xy

x"™ xy

whereAj andD; are the in-plane and out-of-plane
stifnesses, respectively. For straight fiber partbls
A; and Dy may be moved out of the integral since
they are independent of and y. However, for
variable-stiffness panels ti#g andD; are functions
of the panel coordinates and must remain as part of
the integrand.

The potential energy of the external loads is
given by

ab
W= AR+ RV + o [ waxdy+ -
00

B, ,0
AZFX u (x=a)

Following the Rayleigh-Ritz procedure the
displacement functions are assumed of the form,

N
w(x y) =3 a0

x 20
u(x y) = Q5+Z b ®)

0 y 2 v
V(XY =6+, 6P
i=1

wheren, is the number of terms;, b; andc; are the
Ritz coefficients.
Depending on the choice of the functioh$,

®'and®; , different boundary conditions can be

modelled. Since the panel edges are bounded by
different structural elements like stringers, frame
and other adjacent panels, the boundary conditions
can be very complex. In the current work, we

3
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assume linearly varying deformable straight edges above three equations can be reduced to a single

clamped atX = 0, x = @) and simply supported & ( nonlinear equation by eliminatirtg andc; from the

= 0, y = b). The boundary conditions can be third equation using the first two equations. Thies

summarized as, final set of nonlinear equations which define an
y equilibrium load-deflection path is solved f&r and

atx =0, f(0) =0, V(0 = Cog »W(0,y) =0, and by back substitution the coefficients and ¢, are

(0y) = 0 computed. Different techniques are available fer th
X ' tracing of nonlinear equilibrium paths [11]. In ghi
atx = a, P@y = by, V@y = Co ,w@y) =0, paper, we use the normal flow algorithm because of
its robustness and efficiency [11].
andw,(ay) = 0. 3.1 Failure Analysis
aty=0,V(x,0 = 0, f(x,0 = bog andw(x,0) =0 The failure load)" is defined as the load level
X at which first failure occurs. For the purpose of
aty=b, \P(x,b) = ¢y, uo(x,b) = b, =, andw(x,b) =0. predicting failure, we use Tsai-Wu failure criterio
a For an orthotropic lamina under plane stress

where a comma (") in subscript indicates conditions, this criterion is given by
derivative with respect to the variable followirg i

For the assumed boundary conditions the F=F,0; +2F, 00 ,+F g%+ (11)
displacement filed is given by F.O0,+FOo+Fg,
L (i-)mx  (i+)mx) _jny
w(x y)-;z; q{co” a s % whereF is the failure indexg,, 0,, andg,, are
2n 2n the in-plane stresses in the principal material
J”y
w(x y)=h= +Z£Z; QS'”_ sin—— b ©) directions, and~; are functions expressed in terms
2_r\ ’m of the strength properties as follows
J7TY
VO(X, y) = Yy sm— sin—= 1 _ 1 _1
% Zl;.q b F.= X, X. ~ v I:22 _Y[Yc ! F66 g2
The number of the assumed terms for in-plane . _ 1 1 £ _1 1 (12)
displacements’ and\’ is twice that of out-of-plane : x‘ X, 7YY,

displacement inwv. This is done to ensure that the in-
plane equilibrium is adequately satisfied.

By using the stationary conditions of total
potential and minimizing with respect to Ritz According to Tsai-Wu criterion, a composite fails
coefficients a;, b, and ¢ we obtain the general when the following condition is violated
equilibrium equations for a symmetric and balanced

T

o= 2Xt L= X, (F, +F,) = X2 (F,+F,,)

laminated composite plate (see Appendix for F<1 13)
details), In order to apply the Tsai-Wu criterion to
_(/] +/] F )+ Kubb + variable-stiffness laminates, it must be recognized
that stresses will vary as a function of locatimero
i°c o+ KJ“aaq a =0 the domain. This requires that the condition in Eq.
b 13 must be satisfied at every point of every ply
-A F, +Kj b + K,“g + throughout the structure, that is,
(10)
vaa —_
Ki aa =0 (fy)sl (14)

Kig +Ki*ha + Ki™ca+
Kij aaa-AR =0
4 Optimization Formulation
The first two equations in Eg. 10 are linear in
the Ritz coefficients that are corresponding to in- 4.1 Maximization of the Failure Load
plane displacements, namely and ¢. Thus, the
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The optimization problem can be formulated
either to minimize the weight of the structure for yA
given applied loads or maximizing the failure load
for a given thickness. In this paper, the goalhs t
optimization problem is to determine the optimal b
distribution of the fiber orientation angles (oreth
fiber paths) over the structure for maximum failure

load. Mathematically, the problem is formulated as ‘ a

maximize A" (X) (15) Fig. 3. Rectangular domain and coordinate system

>
X

where ATis the objective function representing We define the normalized coordinatgsand/ as
different loading cases and is a vector of  follows
design variables. i= 2xa— a 2yb— b (18)

4.2 Fiber Path Definitions and Design Variables

Varying the stiffness throughout the structure sych that-1<é<1,-1<7<1
requires defining the fiber orientation variatiofrs.
the next sections linear and nonlinear variation of

. . . . X We define the fiber orientation angle in the
fiber orientation angles will be described.

& —n plane by
4.2.1 Linear Variation of Fiber Orientation Angles
Simple forms of linear variation of fiber _ e e
orientation angles for rectangular panels have been 6’(‘(”7) _ZZTU L (‘()LJ (’7) (19)

described in the literature [1]. For example, 70170
wherem andn are number of basis functions used in

H(X):(Tl‘ﬂ)gfg (16) ¢ and ndirections, respectivelyT; are unknown
coefficients andL; are the Lobatto polynomials
whereT, is the fiber orientation angle at= 0 and defined as
T, is the fiber orientation angle at = a. Or, ‘ _
alternatively, L (&)= .[-1 P, (u)dy, =2 (20)
oAT -T where L, (é)=1and L, () =¢, or in a recursive
H(X)Z (1 0)|)4+-|; (17) f LO( ) ( )
a orm
whereT, is the fiber orientation angle at the panel L, ({) :1‘({9_1({)— E_Z({)), i22 (21)
center,x = 0, andT; is the fiber orientation angle at I
the panel ends = +a/2. whereP; are the Legendre polynomials given by
i.féllegonlinear Variation of Fiber Orientation P($) =[(2i —1)5p(i_1) — (i —1)|30 _2)]/i, i22 (22

In a previousstudy [7] a definion of a  andwhereR({)=1and R()=¢.

unidirectional variation based on a nonlinear pqor example, the first few Lobatto polynomials are
function for the fiber orientation angle was

introduced. The nonlinear function was defined | (4‘):1(4‘2—1) L (E):i(fz—l)

using Lobatto-Legendre polynomials. The definition ° 2 T 2 '

of unidirectional variation can be generalized ® b Ll o 4 _1 2 4
applied to spatially varying fiber orientation aegl L4(‘()‘§(1 &+ ) ,%(5)—55(3- 1¢°+ 7 )

as demonstrated in this section. , ) . )
Assume a rectangular domain as shown in By increasing the number of (;oeff|C|enT§ in Eq.
Fig. 3. 19 more freedom can be achieved to represent the

fiber orientation angle variations. Consequently,
there is better chance to capture the optimal fiber

5
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angle distribution. Therefore, in this study theiga
variables are the unknown coefficieitis

5 Application and Results

Results are obtained for a squasgb(= 1),
symmetric and balanced laminate with the variable-

stiffness lay-up[+6(X, y)], - The number of

laminate plies idN = 16. Each ply has a constant
thicknesst = 0.254 mm (0.01 in), i.e. the total
thickness ish = N t The composite material is
typical graphite-epoxy with stiffness and strength
properties given in Table 1 [12]. The pressure lisad
p = 103.42x1 MPa (15psi) and the fuselage
radius isR = 2540mm(100in). The underlying goal
of the optimization problems is to determine the

optimal fiber paths over the structure for maximum
failure load.
Table 1. Material properties
Material propertieg Graphite-Epoxy
E: 207 GPa (30xFsi)
E, 5  GPa (0.75xf@si)
Vi 0.25
G, 2.6 GPa (0.375xf(@si)
X 1035 MPa (150x10psi)
Y, 41  MPa (6x1dpsi)
S 69 MPa (10x10psi)
Xe 689 MPa (100x10psi)
Y. 117 MPa (17x10psi)

The results presented in this paper are for a
number of assumed term§ = 3 which gives

adequate accuracy compared to finite element
analysis. The nonlinear analysis is verified whihtt

of commercial finite element package ABAQUS
using S4R element. The loads, and F, are
proportional to the pressure load, as stated earlie
and the compressive load Fs® = -2F,. The values

of the stresses in the principal material directiare
compared for different designs. For the upper fly o
the panel (z #/2), for example, the stresses at the
plate center are shown in Fig. 4 as functions ef th
load factor. It is clear that the Rayleigh-Ritz lgses
model developed agrees well with the finite element
analysis. It has been found that the maximum error,
in terms of stresses, is within less than 10%, kvhic
makes it adequate for preliminary design purposes.

200
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Fig. 4. Stresses in the principal material direwiof the
[+45°%)s design using R-R and FEM

In this paper, as mentioned earlier, two loading
cases are considered. The first loading caselata p
subjected to pressure only (no in-plane loads) lwhic
will be called Case I, and the second case ist& pla
subjected to a combination of pressure and in-plane
tensile loads applied in the first loading step in
addition to an in-plane compressive load which is
applied in the second loading step. This lattee cas
will be called Case II.
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5.1 Case |: Plate Subjected to Pressure

In order tobetter understand the developing
designs the fiber orientation angle will initially be
varied as a function of only, 6 = §(x), and then it
will be varied spatially as a function of botrandy
coordinatesg = 6(x,y).

5.1.16 = 0(x)

5.1.1.1 Linear Variation of Fiber Orientation Angle

Prior to the optimization work, we first analyze
the plate using linear variation of fiber orientati
angles given by Eq. 17. The pressure failure Isad i
calculated parametrically for various combinations
of the angleg, andT; in the range ¥< 0 < 9C°. The
results of this study are shown in Fig. 5. Thekhic
line in the figure is for constant-stiffness sttdig
fiber format panels. For variable-stiffness parels
family of curves corresponding to various values of
To and T; is available in Fig. 5. Each curve is
generated by varying the value Tf between Band
90 for a given value off; as labeled in the figure.
Intersection of these curves with the curve for the
straight fiber panel is a panel whéligis equal tor,;
value. Clearly, for constant-stiffness laminatee
maximum failure load is achieved for #PR5 g

laminate and the corresponding failure Ioad%lfs:

5.56. However, the maximum failure load that can
be achieved for a variable-stiffness configurati®n

A'=6.19, and is obtained fd, = @ andT, = 25.

This value is about 10% higher than the maximum
value obtained with a straight fiber configuration.

It can also be observed from Fig. 5 that for a
given value ofT, the values of the failure load do
not increase monotonically when the valuesTof
increase. Therefore, search for an optimal solution

th

A= 5.56, which is the same design obtained from

the analysis.

At this point, the optimization problem can be
solved for different number of design variables
(coefficients Tj) using the more general form of
fiber orientation variation given by Eq. 19 after
setting the terms that includg to zero. The
improvement in the load carrying capacity obtained
using the steered fiber designs compared to the
straight fiber design is shown in Table 2. The
number of design variables is increased until the
load carrying capacity improvement becomes
insignificant. The optimal fiber orientation
distributions for different number of design vati
as well as the optimal design obtained using the
linear variation are shown in Fig. 6.
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Fig. 5. Pressure failure load performance usingglin
variation of fiber orientation angles, (Case I)

Table 2. Load carrying capacity improvement (stéere
fiber vs. straight fiber)d = 6(x), (Case 1)

using traditional gradient based approaches are]
likely to be trapped in local optima. Accordingtiie

simplex method [13] is used as the design
optimization platform. Since this method uses only

function value information in the search for optima
the search is repeated with different initial psitd
avoid getting stuck in local optima.

5.1.1.2 Nonlinear Variation of Fiber Orientation
Angles

In order to verify the optimization step, we first
consider the linear fiber orientation variation egiv

by Eg. 16. The result obtained by solving the
optimization problem isT, = T, = 28 with

No. of Load carrying
. design Failure load capacity
Design type variables Af improvement
! [%]
Constant-
stiffness 2 556
[+25]
8s
Variable-
stiffness - 6.19 10.2
(Linear
variation)
Variable- 5 6.51 14.6
stiffness
Variable- 8 6.87 19.0
stiffness
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35 2 coefficients
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- — = — — linear variation
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Fig. 6.0ptimal distributions of the fiber orientation
anglesg = 6(x), (Case 1)

5.1.20 = 9(x,y)

Varying the fiber orientation spatially as a
function ofx andy gives more freedom to the fibers
to curve within the lamina and consequently
additional improvement in the load carrying capacit
may be achieved A comparison between the
constant-stiffness and the variable-stiffness aesig
for different number of design variables, is shdwn
Table 3. The optimal distribution of the fiber
orientation angles fom =n = 6 (36 coefficients) is
depicted in Fig. 7. In order to generate the fiber
paths from the fiber orientation distribution, a
special code has been utilized [14]. The optimal
fiber paths corresponding to the fiber orientation
distribution form=n = 6 are depicted in Fig 8.

Table 3. Load carrying capacity improvement (stéere
fiber vs. straight fiber)d = 6(x,y), (Case )

No. of . Load carrying
Design design Fallur$ load capacity
type variables A improvement
(mxn) [%]
Constant-
stiffness ) 556 )
[+25]
8s
Variable- 4x4 6.65 16.4
stiffness
variable- | g5 6.95 20.0
stiffness
Variable- 6x6 7.43 25.2
stiffness

e - -
——
———— — — — — — — — —
—
——
——
e — — — — — —
e — — — — —
e — — — — — —
e — — — — — — —
e —
Y
= — = — — — — —
e —
-

= - -

.

Fig. 7. Optimal distribution of the fiber orientati angles
for maximum failure load (Case I)

\\

Fig. 8. Optimal fiber paths for maximum failure tha
(Case )

It is clear that the fiber orientation distribution
that results from the use of 6x6 coefficients ip th
fiber angle expansion produces the maximum
pressure failure load providing a load carrying
capacity improvement of 25% over the optimal
straight fiber design. It can also be observed tirat
fiber orientation variation, or in other words, the
stiffness variation is higher within the bending
boundary layer (in the vicinity of the clamped esige
where the bending moment is large) than the
stiffness variation in the center section of thegla
where the stiffness is almost constant.

In order to demonstrate the values of the fiber
orientation angles which are now functions of both
andy, the fiber orientations are plotted as functions
of x at two different sections in the panglb = 0
andy/b = 0.5. The fiber orientation distributions at
those sections, along with that for 8 coefficients,

8
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where the fiber orientation has been varied alwng
only, are shown in Fig. 9. It is clear that theefib
orientation distribution aty/b = 0 is asymmetric
aboutx/a = 0.5, while it becomes symmetricydb =
0.5 showing a similar trend to the fiber orientatio
distribution ford = 6(x), with slight variations of the
fiber orientation angles away from the clamped
edges.

40

35

——e—— 0=0 (x), 8 coefficients
30 — = 0=06(xy),yb=05
e 0=0(XY),yb=0

25

20

15

10

5

Fiber orientation angle [Degrees]

0 01 02 03 04 05 06 07 08 09 1

xla

Fig. 9. Fiber orientation distributions fér= 6(x), and for
6 = 6(x.y) at different sections, (Case I)

5.2 Case Il: Plate Subjected to Pressure, tensile
and compressive loads

In the current case, It is assumed that the
pressure and the pressure-induced tensile loads are

constant X; = 1) in the first loading step, and the
compressive load i6,° = -2 \, F, to ensure that the
panel fails in the second loading step. The go#d is

maximize the in-plane compressive failure load by

introducing Azf as an objective function.

Similar toCase [, the optimal constant-stiffness

design may be determined by considering two
design variables. The optimal straight fiber design

obtained is [+6%s and the corresponding
compressive failure load i, =1.911. For variable-

stiffness designs, the fiber orientation is varied
spatially as a function ok andy, 6 = 6(x,y). A

comparison between the constant-stiffness and the

variable-stiffness designs, for different number of
design variables, is shown in Table 4.

Table. 4. Load carrying capacity improvement (&der
fiber vs. straight fiber)d = (x,y), (Case Il)

No. of . Load carrying
Design design Fallur(? load | capacity
type variables /]2 improvement
(mxn) [%]
Constant-
stiffness 1.911
[+62]
8s
Variable- 4x7 2.075 7.9
stiffness ’ '
Variable- 4x9 2257 153
stiffness

For the variable-stiffness designs, the optimal
fiber orientation distributions for the developed
designs are depicted in Fig. 10 and 11. The optimal
fiber paths fom= 4,n =9 are illustrated in Fig. 12.

e D |
R N O

I O et
e St N N N NN NN N N NG
I N
e N NN N NN N |

e N N N
e NN NN N
s S S SN SN N N S S s o

rrrrrrrrrrrrr

Dt N N N NN N NS
i NN NN N N N N N
e S N NN N NN N N NN NS

Fig. 10. Optimal distribution of the fiber orieritat
angles for maximum failure loath =4, n =7, (Case Il)
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Fig. 11. Optimal distribution of the fiber oriertat
angles for maximum failure loath =4,n =9, (Case Il)



AHMAD ALHAJAHMAD, Mostafa M. Abdalla and Z. Gurdal

(4]

Fig. 12. Optimal fiber paths for maximum failureth
m=4,n=9, (Case Il

(6]

Clearly, the maximum failure load obtained
using 4x9 coefficients provides a load carrying
capacity improvement of more than 15% over the
optimal straight fiber design. Moreover, it canoals
be noticed that the fiber paths are smooth exhipiti
neither discontinuities nor large curvatures. This
makes the designs obtained efficient and feastble t
be manufactured.

(7]

(8]

5 Conclusion

In this study, design tailoring for pressure
pillowing problem of a fuselage skin panel using
steered fibers was demonstrated. The optimal fiber 9l
paths over the structure were determined for
maximum failure load. Optimal designs for both
straight fibers and steered fibers were obtained. |
was shown that by placing the fibers in their opfim
spatial orientations, the pressure pillowing prable
can be alleviated, and the load carrying capadity o
the structure can be improved compared to
traditional designs with straight fibers.

[12] Jones
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Appendix
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Kitjb = J. (Alq)iux ¢’qu + AYSGCDiuy q)l uy ) dXdy
00

ab
Kitjc = I (AiZq)iVy q)qu + A66¢’iv>; ¢’I uy ) dXdy

00
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00
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ab
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00
ab
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00
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ab
P, = [ [ p®dxdy
00
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