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Abstract  

Manufacturing of high quality fiber-reinforced 
composite structures with spatially varying fiber 
orientation is possible using advanced tow-
placement machines. Changing the fiber orientation 
angle within a layer produces variable-stiffness 
properties. Contrary to traditional composites with 
straight fibers, this method allows the designer to 
fully benefit from the directional material properties 
of the composite to improve laminate performance 
by determining optimal fiber paths.  

 In this paper, design tailoring for pressure 
pillowing problem of a fuselage skin is addressed 
using steered fibers. The problem is modelled as a 
two-dimensional plate using von Kármán plate 
equations. The design objective is to determine the 
optimal fiber paths over the panel for maximum 
failure load. Different designs are obtained for 
different loading cases. The results indicate that by 
using steered fibers the pressure pillowing problem 
can be alleviated, and the load carrying capacity of 
the structure can be improved compared to designs 
with straight fibers. 

 

 

1 Introduction  

One of the primary advantages of using fiber-
reinforced laminated composites in structural design 
is the ability to change the stiffness and strength of 
the laminate by designing the laminate stacking 
sequence in order to improve its performance. This 
flexibility to design the stacking sequence of the 
laminate is typically referred to as laminate tailoring. 
Traditionally, tailoring is achieved by keeping the 
fiber orientation angle within each layer constant 
throughout a component resulting in constant-
stiffness structure. One method of creating variable-
stiffness composite structure is by changing the fiber 

orientation angle continuously within the lamina. 
Allowing the fibers to curve within the lamina 
constitutes an advanced tailoring option to account 
for non-uniform stress states in a continuous 
manner. By varying the stiffness properties of 
composite laminates from one point to another, the 
design space is expanded as compared to the 
classical stacking sequence design problem. As a 
consequence, stiffer and/or lighter structures can be 
obtained. 

An intensive study of rectangular panels with 
curvilinear fiber paths, termed variable-stiffness 
panels, was carried out by Gürdal et al. [1]. The 
curvilinear paths in those studies were generated 
from a base curve that changes its orientation angle 
linearly from one end of the panel to the other, while 
taking into account constraints on the radius of 
curvature of the fiber paths. Despite the fact that 
linear fiber orientation variation represents only a 
limited class of spatially varying orientations, earlier 
studies showed that significant improvements in the 
laminate response can be obtained for panels with 
and without holes under compression and shear 
loads [2-4]. Investigation of the optimal designs for 
both constant and variable-stiffness rectangular 
composite plates for minimum compliance was 
performed by Setoodeh et al. [5]. In these latter 
studies, the lamination parameters were used as 
design variables instead of fiber orientation angles, 
thus reducing the number of design variables. 
Moreover, the formulation guaranteed that the 
solution is optimal, benefiting from the fact that the 
optimization problem is convex. Although the actual 
stacking sequence was unknown, the results showed 
that substantial improvements in stiffness can be 
gained by using variable-stiffness designs. In a 
follow-up work, the curvilinear fiber paths were 
generated from the lamination parameter distribution 
[6].  

A challenging problem in the aircraft structures 
associated with thin-walled stiffened structures is the 
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so-called pressure pillowing. Pressurized fuselages 
and fuel tanks are typical examples of structures in 
which pressure pillowing is observed. In the case of 
fuselages, the cabin pressure causes a significant 
pressure differential across the skin. An unstiffened 
fuselage would carry this internal pressure load as a 
shell in membrane response, like pressure vessels. 
However, internal longitudinal and transverse 
stiffeners (stringers and frames as shown in Fig. 1) 
are necessary to carry maneuver loads. The presence 
of these stiffeners prevents the fuselage skin from 
expanding as a membrane, and the skin bulges, or 
“pillows”, within each panel bay under the action of 
the internal pressure. When the skin is restrained 
against out-of-plane expansion at the stiffener 
locations, a bending boundary layer is formed. 

Recently, design tailoring for pressure 
pillowing using variable-stiffness concept has been 
investigated by Alhajahmad et al.[7]. The pressure 
pillowing problem was modelled as a one-
dimensional clamped-clamped beam-plate in two 
loading cases. The first case was a one-dimensional 
plate subjected to pressure and the second one was a 
one-dimensional plate under combined pressure and 
in-plane compressive loads. For both loading cases, 
the optimal fiber paths along the beam-plate length 
for minimum weight subject to strength constraints 
were determined. It was shown, in this latter study, 
that by using steered fibers the pressure pillowing 
problem can be alleviated, and lighter laminates can 
be designed compared to designs with straight 
fibers. 

 

 
Fig.1. Stiffened structure of a pressurized fuselage 

(courtesy of Fiber Metal Laminates Center of Competence) 
  

For the analysis of the pressure pillowing 
problem, the fuselage skin of a panel bay can be 
modelled using different levels of complexity. 
Research reported in [7] used a simple beam-plate 

model, but in general, requires a two-dimensional 
plate or shallow shell modelling under combined 
pressure and in-plane loads. Hence, in this paper the 
problem is modelled as a two-dimensional plate 
subjected to pressure and in-plane loads. The 
optimization problem is formulated to determine the 
optimal fiber paths over the panel for maximum 
failure load. For optimization purposes, it is of great 
importance to select an efficient and fast method for 
the nonlinear analysis. Although the finite element 
method is a powerful tool for structural analysis 
problems, the nonlinear nature of the problem at 
hand makes the use of the finite element undesirable 
due to excessive computational time required. In this 
study, the plate problem is approximated using 
Rayleigh-Ritz method (R-R), and the nonlinear 
response is traced using normal flow algorithm [8]. 

 

2 Problem Formulation  

In this paper, a pressurized fuselage skin 
bounded by two stringers and two frames is 
modelled as a two-dimensional plate. It is assumed 
that the skin is flat, balanced and symmetric 
laminate with a variable-stiffness lay-up 
[ ( , )]nsx yθ± . The laminate is loaded in two steps. In 

the first loading step, a uniform pressure p is 
applied, which is translated into two loads, axial 
tensile load Fx and hoop tensile load Fy, calculated 
as  

2x

pR
F b= ,         yF pRa=                          (1) 

where a and b are the length and the width of the 
plate, respectively, and R is the radius of  the 
fuselage. The pressure and hence the tensile loads 
are incremented by means of a scaling factor λ1 in 
the first loading step. In the second loading step, an 

additional axial compressive loadB
xF , which results 

from fuselage bending, is applied. This latter load is 
incremented by means of a scaling factor λ2 while 
keeping λ1 fixed at the end of the first loading step. 

 In this work, two loading cases will be 
investigated, a plate subjected to pressure only (no 
pressure-induced tensile loads), and a plate subjected 
to a combination of pressure and in-plane tensile 
loads applied in the first loading step besides an in-
plane compressive load which is applied in the 
second loading step. 
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The panel boundary conditions are clamped at 
(x = 0, x = a) simulating the panel edges at the 
frame locations, and simply supported at (y = 0, y = 
b) simulating the panel edges at the stringer 
locations. The fuselage panel model is shown in Fig. 
2. 

 
Fig. 2. Fuselage panel model  

 

3 Analysis Formulation 

Assuming that the plate is thin, such that the 
Kirchhoff hypothesis is valid, the laminate strains 
are expressed in the following form [9] 

 { } { } { }κεε z+= 0      (2) 

where{ }0
ε  and { }κ  denote the mid-plane strains and 

curvatures, respectively. In the moderately large 
rotation case, according to the von Kármán model, 
the mid-plane strains and curvatures are given by 
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where u0, v0, and w are the mid-plane displacements. 
Following the Rayleigh-Ritz procedure [10], 

the total potential energy is given by 

WU −=Π                  (5) 

where U is the strain energy, and W is the potential 
energy of the external loads. 

For symmetric and balanced laminates, the 
strain energy in terms of the mid-plane strains and 
curvatures is given by 
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where Aij and Dij are the in-plane and out-of-plane 
stifnesses, respectively. For straight fiber panels, the 
Aij and Dij may be moved out of the integral since 
they are independent of x and y. However, for 
variable-stiffness panels the Aij and Dij are functions 
of the panel coordinates and must remain as part of 
the integrand. 

The potential energy of the external loads is 
given by 
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Following the Rayleigh-Ritz procedure the 
displacement functions are assumed of the form, 
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where tn  is the number of terms, ai, bi and ci are the 

Ritz coefficients. 

Depending on the choice of the functionswiΦ , 
u
iΦ and v

iΦ , different boundary conditions can be 

modelled. Since the panel edges are bounded by 
different structural elements like stringers, frames 
and other adjacent panels, the boundary conditions 
can be very complex. In the current work, we 
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assume linearly varying deformable straight edges 
clamped at (x = 0, x = a) and simply supported at (y 
= 0, y = b). The boundary conditions can be 
summarized as, 

at x = 0, u0(0,y) = 0, v0(0,y) = 0

y
c

b
, w(0,y) = 0, and 

w,x(0,y) = 0. 

at x = a, u0(a,y) = b0 , v
0(a,y) = 0

y
c

b
, w(a,y) = 0, 

and w,x(a,y) = 0. 

at y = 0, v0(x,0) = 0, u0(x,0) = 0

x
b

a
, and w(x,0) = 0  

at y = b, v0(x,b) = c0 , u
0(x,b) = 0

x
b

a
, and w(x,b) =0.  

where a comma (“,”) in subscript indicates 
derivative with respect to the variable following it. 

For the assumed boundary conditions the 
displacement filed is given by 
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The number of the assumed terms for in-plane 
displacements u0 and v0 is twice that of out-of-plane 
displacement in w. This is done to ensure that the in-
plane equilibrium is adequately satisfied. 

By using the stationary conditions of total 
potential and minimizing with respect to Ritz 
coefficients ai, bi and ci we obtain the general 
equilibrium equations for a symmetric and balanced 
laminated composite plate (see Appendix for 
details), 
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The first two equations in Eq. 10 are linear in 
the Ritz coefficients that are corresponding to in-
plane displacements, namely bi and ci. Thus, the 

above three equations can be reduced to a single 
nonlinear equation by eliminating bi and ci from the 
third equation using the first two equations. Then the 
final set of nonlinear equations which define an 
equilibrium load-deflection path is solved for ai, and 
by back substitution the coefficients bi and ci are 
computed. Different techniques are available for the 
tracing of nonlinear equilibrium paths [11]. In this 
paper, we use the normal flow algorithm because of 
its robustness and efficiency [11]. 

3.1 Failure Analysis 

The failure load λf is defined as the load level 
at which first failure occurs. For the purpose of 
predicting failure, we use Tsai-Wu failure criterion. 
For an orthotropic lamina under plane stress 
conditions, this criterion is given by  
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where F is the failure index, 21, σσ , and 12σ  are 

the in-plane stresses in the principal material 
directions, and Fij   are functions expressed in terms 
of the strength properties as follows 
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According to Tsai-Wu criterion, a composite fails 
when the following condition is violated 

1≤F                (13) 

In order to apply the Tsai-Wu criterion to 
variable-stiffness laminates, it must be recognized 
that stresses will vary as a function of location over 
the domain. This requires that the condition in Eq. 
13 must be satisfied at every point of every ply 
throughout the structure, that is, 

( , )
1

x y
F ≤                                                    (14) 

 

4 Optimization Formulation 

4.1 Maximization of the Failure Load  
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The optimization problem can be formulated 
either to minimize the weight of the structure for 
given applied loads or maximizing the failure load 
for a given thickness. In this paper, the goal of the 
optimization problem is to determine the optimal 
distribution of the fiber orientation angles (or the 
fiber paths) over the structure for maximum failure 
load. Mathematically, the problem is formulated as 

 

maximize   f (X)λ                                      (15) 
 

where fλ is the objective function representing 
different loading cases and X is a vector of 
design variables. 

4.2 Fiber Path Definitions and Design Variables  

Varying the stiffness throughout the structure 
requires defining the fiber orientation variations. In 
the next sections linear and nonlinear variation of 
fiber orientation angles will be described. 

4.2.1 Linear Variation of Fiber Orientation Angles  

Simple forms of linear variation of fiber 
orientation angles for rectangular panels have been 
described in the literature [1]. For example, 

( ) ( )
01 0

x
x T T T

a
θ = − +                                     (16) 

where T0 is the fiber orientation angle at x = 0 and 
T1 is the fiber orientation angle at x = a. Or, 
alternatively, 
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01
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x x T

a
θ

−
= +                                  (17) 

where T0 is the fiber orientation angle at the panel 
center, x = 0, and T1 is the fiber orientation angle at 
the panel ends, x = ± a/2.  

4.2.1 Nonlinear Variation of Fiber Orientation    
Angles  

In a previous study [7] a definition of a 
unidirectional variation based on a nonlinear 
function for the fiber orientation angle was 
introduced. The nonlinear function was defined 
using Lobatto-Legendre polynomials. The definition 
of unidirectional variation can be generalized to be 
applied to spatially varying fiber orientation angles 
as demonstrated in this section. 

Assume a rectangular domain as shown in 
Fig. 3.  

a

b

x

y

 
Fig. 3. Rectangular domain and coordinate system 

 
We define the normalized coordinates ξ  and η as 
follows 

2 2
,

x a y b

a b
ξ η− −= =                 (18) 

 
such that  1 1, 1 1ξ η− ≤ ≤ − ≤ ≤  

 
We define the fiber orientation angle in the 

ξ η−  plane by 
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where m and n are number of basis functions used in 
ξ and η directions, respectively, Tij are unknown 
coefficients and Li are the Lobatto polynomials 
defined as  

( ) ( )11
, 2i iL P d i

ξ
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where ( )0 1L ξ =  and ( )1L ξ ξ= , or in a recursive 

form  
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where Pi are the Legendre polynomials given by 

( 1) ( 2)( ) [(2 1) ( 1) ] / , 2i i iP i P i P i iξ ξ − −= − − − ≥    (22) 

and where 0( ) 1P ξ =  and 1( )P ξ ξ= . 

For example, the first few Lobatto polynomials are 
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By increasing the number of coefficients Tij in Eq. 
19 more freedom can be achieved to represent the 
fiber orientation angle variations. Consequently, 
there is better chance to capture the optimal fiber 
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angle distribution. Therefore, in this study the design 
variables are the unknown coefficients Tij. 

 

5 Application and Results 

Results are obtained for a square (a/b = 1), 
symmetric and balanced laminate with the variable-
stiffness lay-up 8[ ( , )] sx yθ± . The number of 

laminate plies is N = 16. Each ply has a constant 
thickness t = 0.254 mm (0.01 in), i.e. the total 
thickness is h = N t. The composite material is 
typical graphite-epoxy with stiffness and strength 
properties given in Table 1 [12]. The pressure load is 
p = 103.42×10-3 MPa (15 psi) and the fuselage 
radius is R = 2540 mm (100 in). The underlying goal 
of the optimization problems is to determine the 
optimal fiber paths over the structure for maximum 
failure load. 

Table 1. Material properties 
Material properties Graphite-Epoxy 

E1 207   GPa  (30×106 psi) 

E2 5       GPa  (0.75×106 psi) 

ν12 0.25 
G12 2.6    GPa  (0.375×106 psi) 

Xt 1035 MPa (150×103 psi) 

Yt 41     MPa (6×103 psi) 

S 69     MPa (10×103 psi) 

Xc 689   MPa (100×103 psi) 

Yc 117   MPa (17×103 psi) 

 
The results presented in this paper are for a 

number of assumed terms tn = 3 which gives 

adequate accuracy compared to finite element 
analysis. The nonlinear analysis is verified with that 
of commercial finite element package ABAQUS 
using S4R element. The loads Fx and Fy are 
proportional to the pressure load, as stated earlier, 
and the compressive load is Fx

B = -2Fx. The values 
of the stresses in the principal material directions are 
compared for different designs. For the upper ply of 
the panel (z = h/2), for example, the stresses at the 
plate center are shown in Fig. 4 as functions of the 
load factor. It is clear that the Rayleigh-Ritz analysis 
model developed agrees well with the finite element 
analysis. It has been found that the maximum error, 
in terms of stresses, is within less than 10%, which 
makes it adequate for preliminary design purposes. 
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Fig. 4. Stresses in the principal material directions of the 
[±450]8s design using R-R and FEM 

In this paper, as mentioned earlier, two loading 
cases are considered. The first loading case is a plate 
subjected to pressure only (no in-plane loads) which 
will be called Case I, and the second case is a plate 
subjected to a combination of pressure and in-plane 
tensile loads applied in the first loading step in 
addition to an in-plane compressive load which is 
applied in the second loading step. This latter case 
will be called Case II.  
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5.1 Case I: Plate Subjected to Pressure 

In order to better understand the developing 
designs, the fiber orientation angle will initially be 
varied as a function of x only, θ = θ(x), and then it 
will be varied spatially as a function of both x and y 
coordinates, θ = θ(x,y). 

5.1.1 θ = θ(x) 

5.1.1.1 Linear Variation of Fiber Orientation Angles  

Prior to the optimization work, we first analyze 
the plate using linear variation of fiber orientation 
angles given by Eq. 17. The pressure failure load is 
calculated parametrically for various combinations 
of the angles T0 and T1 in the range 00 ≤ θ ≤ 900. The 
results of this study are shown in Fig. 5. The thick 
line in the figure is for constant-stiffness straight 
fiber format panels. For variable-stiffness panels a 
family of curves corresponding to various values of 
T0 and T1 is available in Fig. 5. Each curve is 
generated by varying the value of T0 between 00 and 
900 for a given value of T1 as labeled in the figure. 
Intersection of these curves with the curve for the 
straight fiber panel is a panel where T0 is equal to T1 
value. Clearly, for constant-stiffness laminates the 
maximum failure load is achieved for a[25± o]8s 

laminate and the corresponding failure load is 1
fλ  = 

5.56. However, the maximum failure load that can 
be achieved for a variable-stiffness configuration is 

1
fλ = 6.19, and is obtained for T0 = 00 and T1 = 250.  

This value is about 10% higher than the maximum 
value obtained with a straight fiber configuration.  

It can also be observed from Fig. 5 that for a 
given value of T0 the values of the failure load do 
not increase monotonically when the values of T1 
increase. Therefore, search for an optimal solution 
using traditional gradient based approaches are 
likely to be trapped in local optima. Accordingly, the 
simplex method [13] is used as the design 
optimization platform. Since this method uses only 
function value information in the search for optima, 
the search is repeated with different initial points to 
avoid getting stuck in local optima. 

5.1.1.2 Nonlinear Variation of Fiber Orientation 
Angles  

In order to verify the optimization step, we first 
consider the linear fiber orientation variation given 
by Eq. 16. The result obtained by solving the 
optimization problem is T0 = T1 = 250 with         

1
fλ = 5.56, which is the same design obtained from 

the analysis. 
At this point, the optimization problem can be 

solved for different number of design variables 
(coefficients Tij) using the more general form of 
fiber orientation variation given by Eq. 19 after 
setting the terms that include y to zero. The 
improvement in the load carrying capacity obtained 
using the steered fiber designs compared to the 
straight fiber design is shown in Table 2. The 
number of design variables is increased until the 
load carrying capacity improvement becomes 
insignificant. The optimal fiber orientation 
distributions for different number of design variables 
as well as the optimal design obtained using the 
linear variation are shown in Fig. 6.  
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Fig. 5. Pressure failure load performance using linear 
variation of fiber orientation angles, (Case I) 

 
Table 2. Load carrying capacity improvement (steered 

fiber vs. straight fiber), θ = θ(x), (Case I) 

Load carrying 
capacity 

improvement 
[%] 

 
Failure load 

1
fλ  

No. of 
design 

variables 
Design type 

- 5.56 2 

Constant-
stiffness 

0

8
25

s
 ± 

 

10.2 6.19 - 

Variable-
stiffness 
(Linear 

variation) 

14.6 6.51 5 
Variable-
stiffness 

19.0 6.87 8 
Variable-
stiffness 
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Fig. 6. Optimal distributions of the fiber orientation 

angles, θ = θ(x), (Case I)  
 

5.1.2 θ = θ(x,y) 

Varying the fiber orientation spatially as a 
function of x and y gives more freedom to the fibers 
to curve within the lamina and consequently 
additional improvement in the load carrying capacity 
may be achieved. A comparison between the 
constant-stiffness and the variable-stiffness designs, 
for different number of design variables, is shown in 
Table 3. The optimal distribution of the fiber 
orientation angles for m = n = 6 (36 coefficients) is 
depicted in Fig. 7. In order to generate the fiber 
paths from the fiber orientation distribution, a 
special code has been utilized [14]. The optimal 
fiber paths corresponding to the fiber orientation 
distribution for m = n = 6 are depicted in Fig 8. 

 

Table 3. Load carrying capacity improvement (steered 
fiber vs. straight fiber), θ = θ(x,y), (Case I) 

Load carrying 
capacity 

improvement 
[%] 

Failure load 

1
fλ  

No. of 
design 

variables 
(m×n) 

Design 
type 

- 5.56 - 

Constant-
stiffness 

0

8
25

s
 ± 

 

16.4 6.65 4×4 
Variable-
stiffness 

20.0 6.95 5×5 
Variable-
stiffness 

25.2 7.43 6×6 
Variable-
stiffness 

 
 

 
Fig. 7. Optimal distribution of the fiber orientation angles 

for maximum failure load (Case I) 
 

 

 

 
Fig. 8. Optimal fiber paths for maximum failure load, 

(Case I) 
 

 
It is clear that the fiber orientation distribution 

that results from the use of 6×6 coefficients in the 
fiber angle expansion produces the maximum 
pressure failure load providing a load carrying 
capacity improvement of 25% over the optimal 
straight fiber design. It can also be observed that the 
fiber orientation variation, or in other words, the 
stiffness variation is higher within the bending 
boundary layer (in the vicinity of the clamped edges 
where the bending moment is large) than the 
stiffness variation in the center section of the panel 
where the stiffness is almost constant. 

In order to demonstrate the values of the fiber 
orientation angles which are now functions of both x 
and y, the fiber orientations are plotted as functions 
of x at two different sections in the panel, y/b = 0 
and y/b = 0.5. The fiber orientation distributions at 
those sections, along with that for 8 coefficients, 
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where the fiber orientation has been varied along x 
only, are shown in Fig. 9. It is clear that the fiber 
orientation distribution at y/b = 0 is asymmetric 
about x/a = 0.5, while it becomes symmetric at y/b = 
0.5 showing a similar trend to the fiber orientation 
distribution for θ = θ(x), with slight variations of the 
fiber orientation angles away from the clamped 
edges. 

 

x/a

F
ib

er
or

ie
n

ta
tio

n
an

gl
e,θ

[D
eg

re
es

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

θ = θ 1
θ = θ
θ = θ

(x), 8 coefficients
(x,y), y/b = 0.5
(x,y), y/b = 0

 
Fig. 9. Fiber orientation distributions for θ = θ(x), and for 

θ = θ(x,y) at different sections,  (Case I) 
 

 

5.2 Case II: Plate Subjected to Pressure, tensile 
and compressive loads 

In the current case, It is assumed that the 
pressure and the pressure-induced tensile loads are 
constant (λ1 = 1) in the first loading step, and the 
compressive load is Fx

B = -2 λ2 Fx to ensure that the 
panel fails in the second loading step. The goal is to 
maximize the in-plane compressive failure load by 

introducing 2
fλ as an objective function.  

Similar to Case I, the optimal constant-stiffness 
design may be determined by considering two 
design variables. The optimal straight fiber design 
obtained is [±620]8s and the corresponding 

compressive failure load is 2
fλ =1.911. For variable-

stiffness designs, the fiber orientation is varied 
spatially as a function of x and y, θ = θ(x,y). A 
comparison between the constant-stiffness and the 
variable-stiffness designs, for different number of 
design variables, is shown in Table 4. 

 

Table. 4. Load carrying capacity improvement (steered 
fiber vs. straight fiber), θ = θ(x,y), (Case II) 

Load carrying 
capacity 

improvement 
[%] 

Failure load 

2
fλ  

No. of 
design 

variables 
(m×n) 

Design 
type 

- 1.911 - 

Constant-
stiffness 

0

8
62

s
 ± 

 

7.9 2.075 4×7 
Variable-
stiffness 

15.3 2.257 4×9 
Variable-
stiffness 

 
 
For the variable-stiffness designs, the optimal 

fiber orientation distributions for the developed 
designs are depicted in Fig. 10 and 11. The optimal 
fiber paths for m = 4, n = 9 are illustrated in Fig. 12. 

 

 
Fig. 10. Optimal distribution of the fiber orientation 

angles for maximum failure load, m = 4, n = 7, (Case II) 

 
Fig. 11. Optimal distribution of the fiber orientation 

angles for maximum failure load, m = 4, n = 9, (Case II) 
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Fig. 12. Optimal fiber paths for maximum failure load, 

 m = 4, n = 9, (Case II) 

 

Clearly, the maximum failure load obtained 
using 4×9 coefficients provides a load carrying 
capacity improvement of more than 15% over the 
optimal straight fiber design. Moreover, it can also 
be noticed that the fiber paths are smooth exhibiting 
neither discontinuities nor large curvatures. This 
makes the designs obtained efficient and feasible to 
be manufactured.  

 

5 Conclusion 

In this study, design tailoring for pressure 
pillowing problem of a fuselage skin panel using 
steered fibers was demonstrated. The optimal fiber 
paths over the structure were determined for 
maximum failure load. Optimal designs for both 
straight fibers and steered fibers were obtained. It 
was shown that by placing the fibers in their optimal 
spatial orientations, the pressure pillowing problem 
can be alleviated, and the load carrying capacity of 
the structure can be improved compared to 
traditional designs with straight fibers.  
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