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Abstract 
 
The most important issues for the design of 
composite pressure vessels reflect on the 
selection of the most suitable rovings (in terms 
of strength and thickness) and the distribution of 
the intended number of circuits around the 
vessel periphery. In this paper we show that 
dimensioning a pressure vessel and selecting a 
roving without the simultaneous creation of 
winding patterns will definitely lead to a less 
optimal design. The designer should 
simultaneously ensure tangential pole passage 
for the rovings, homogenous coverage (by using 
roving widths according to a predetermined 
range), and, at the same time, minimise the 
excess of overwound circuits as compared to the 
number of rovings dictated by structural 
analysis. In this paper we provide a 
methodology for dealing with this contradicting 
set of demands. 
 

Background  

The design procedure for filament wound 
products can be characterized by a strong interaction 
between shape determination, structural 
performance, selection of materials and 
reinforcement layer architecture [1-3]. Particularly 
in cases where the intended product is very sensitive 
to the resulting fibre architecture, the simultaneous 
determination of appropriate winding patterns and 
suitable fibre trajectories becomes a necessity. 
Typical examples of such fibre-architecture-
sensitive structures are composite pressure vessels. 
In this case, a prescribed number of layers or rovings 

of particular dimensions should not only lead to 
feasible winding trajectories (occasionally non-
geodesics) but also automatically fit into acceptable 
winding patterns. 
 
Problem identification 
 

In a more concise formulation, the output of 
the structural design procedure for a composite 
pressure vessel is usually a minimally required 
number of particular rovings that should overwrap 
the mandrel. In [4] the necessity for partially 
applying non-geodesic winding has been 
demonstrated. The following step is the 
determination of a proper winding pattern where the 
pattern-dictated number of circuits should ideally be 
the same as the required number of rovings, as 
dictated by structural analysis [5, 6]. Hence a 
simultaneous matching is here required. 

In regard to structural analysis [5-7], pattern 
creation [8, 9] and fibre path determination [10-12], 
an extensive collection of references can be found. 
Here, we have just mentioned a few. However, little 
attention has been paid to the interaction between 
these design tasks. In [13, 14] some examples can be 
found.  Particularly in the case where partial non-
geodesic winding is applied, automatic matching of 
patterns to the structural layout becomes 
increasingly complicated. A pattern must be 
achieved for which the underlying number of 
windings is not unacceptably bigger than the 
required number of rovings, the winding angle at the 
polar areas should be equal to 90° [15], the utilized 
friction must not exceed the available one, and the 
width of the applied rovings must be realistic, 
preferably within a prescribed range. The solution to 
this problem requires an integral approach. The 
perfect match has to be obtained in the form of the 
appropriate {friction, roving width} combinations. 
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Proposed solution 
 
In this paper we provide a methodology for 

automatically creating suitable winding patterns for 
pressure vessels, regardless the presence of non-
geodesic fibre trajectories.  

The first issue that should be tackled is the 
degree of reinforcement. This definition reflects on 
the strength per unit of width of a roving that is 
made out of a particular material, with a particular 
thickness. We have chosen for this definition, 
because at the end, the roving width itself is not a 
decisive parameter for the structural performance; 
one can e.g. apply 200 rovings with a width of 1 
[mm] or 20 rovings with a width of 10 [mm]. The 
most important item is that the strength / roving 
thickness combination must ensure an integer 
number of overwound layers. Amazingly, this 
constraint has never been analyzed in a systematic 
way. Most pressure vessel designs do not comply 
with this rule. 

Next, with the proper roving data, we must 
identify which parameters influence the so-called 
turnaround angle of a winding. This quantity is the 
angular propagation between two neighbouring 
circuits. Depending on the range and the magnitude 
of the involved friction (for the creation of the non-
geodesic parts of the roving trajectory), the 
turnaround angle will obtain distinctive values. On 
the other hand, the creation of either a perfect 
leading or lagging pattern requires prefixed values 
for the turnaround angles. These values are based on 
the selected roving properties (strength & thickness) 
and the range for the roving width itself (this does 
only affect the pattern, not the structural 
performance). The pattern-dictated angular 
propagations should match the turnaround angles as 
created by the fibre paths. However, in the general 
case, it is not unlikely that a match can not be 
obtained. For example, if the range of the fibre-path-
generated turnaround angles lays outside the range 
of the pattern dictated ones, some additional turning 
around of the roving at the polar areas might be 
inevitable. Hence, the methodology is split into two 
parts; firstly, a proper investigation is carried out to 
identify possible matching and secondly a fine-
tuning is performed to create perfect matching by 
means of additional turnaround. Alternatively, a 
refined search can be performed for exactly pin-
pointing the best roving width or amount of friction 
that will lead to the automatic coincidence of the 
pattern dictated and roving dictated turnaround 
angles.  

Outline 
 
The link between favourable structural performance 
(sufficient number of rovings) and economic 
production (least excess of wound circuits) is 
established by a comparison of the amount of 
reinforcement and the number of overwound 
circuits. In section 2 we provide a short overview 
regarding the determination of the minimally 
required number of rovings. 

Next, in section 3 we emphasize the importance 
of proper winding patterns and accordingly we 
define the main parameters that lead to such 
patterns.  

In section 4, an outline is given regarding the 
calculation of the turnaround angles and the 
determination of the required number of windings, 
specifically adjusted to a particular number of 
overwound layers. The latter requires dedicated 
selection of appropriate material / roving thickness 
combinations.  

With the entire set of pattern related 
parameters, the coupling to the structural 
performance requirements is explained in section 5. 
In addition, we outline the methodology for finally 
obtaining the best patterns possible. The most 
appropriate patterns are obtained after a fine-tuning 
procedure, based on either additional turning around 
at the poles or a refined search in the {friction, 
roving width} space. 

The paper ends with a short presentation of the 
conclusions in section 6, where we additionally 
provide some recommendations.  
 
2 Required number of rovings 

 

Fig. 1. Loads on, and geometry of a pressure 
vessel  
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Since the determination of feasible winding patterns 
does strongly rely on the number and dimensions of 
the applied rovings, it is convenient to shortly 
outline how these parameters affect the strength of a 
particular pressure vessel design, which is 
schematically given in figures 1 and 2. 
 
2.1 Axial equilibrium 
 

In figure 1, a rotationally symmetric shell is 
given that is loaded by a uniform axial force 
distribution A and internal pressure Pr. The axial 
equilibrium of forces, at a datum ρ  is given by [4, 
5]: 

 

APFN += 2
rf coscos πρβα   (1) 

 
where the total number Nf of rovings crossing the 
periphery are loaded by a force F. The angles α 
(winding angle) and β (related to the meridian slope) 
are given in figure 2.  

 
Fig. 2. Geometric parameters of a shell 

meridian  
 
The radius ρ belongs to the range [ρ0, ρeq]. A more 
elegant way for writing equation (1) is: 
 

2
acoscos Yka +=βα    (2) 

 
where: 
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In addition, we introduce: 
 

0ρ
z

Z =    (4) 

 
The most convenient type of fibre placement for 
pressure vessels reflects on geodesic winding, 
governed by the Clairaut equation: 
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The second angle in equation (2), β, is given by: 
 

)('1

)('

)('1

)('
cos

22 YZ

YZ

z

z

+
=

+
=

ρ
ρβ  (6) 

 
With the dimensionless coordinates {Z, Y} and 
equations (1), (5) and (6), the differential equation 
for the optimal meridian profile can be formulated as 
[4, 5]: 
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At the equator, the meridian profile will have a 
vertical slope, hence cosβ = 1 and Z’(Y) = infinity. 
From equation (2) or alternatively, by setting the 
denominator of (7) equal to zero, we obtain: 
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Combination of equations (2) and (3b) leads to: 
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From this expression, one can determine the 
required number of rovings / bundles / tows Nf  
where each of them has a strength F. The input 
parameters for this derivation are just two in 
number: the radial aspect ratio (Yeq) and the axial 
load A. 
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2.2 {q, r} parameterisation 
 
As outlined in the previous subsection, the meridian 
profile depends on a geometric parameter (radial 
ratio) and the axial force. As described by equation 
(9), the axial load A can directly be compared to the 
total axial load induced by internal pressure, on the 
projected surface at the vessel equator: 
 

222
0 eq
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  (10) 

 
The geometric parameter (Yeq) can also be 

expressed in a more convenient way. To enhance 
this, we should first look at the denominator of 
equation (7). One value where it nullifies is Y = Yeq. 
The second real value providing zero is generally 
slightly bigger than 1 [4, 5, 15]. We will call this 
Ymin. The ratio of the minimum and maximum radius 
is expressed by: 
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Plugging expressions (10) and (11) into (8) leads to: 
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Substitution of this result into the denominator of (7) 
and solving for zero leads to: 
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Now we can substitute this expression into (12) to 
obtain a {q, r}-based expression for the axial load 
[15]: 
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With the original definition for a (equation (3b)), 
one can finally obtain: 
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From this equation it becomes clear that the 
degree of reinforcement is linear to the internal 
pressure while increasing in a quadratic fashion with 
the reference opening radius. With this derivation, 
the expression for the first pattern related parameter, 
the number of rovings, is established.  
 
3. Winding patterns 

 
3.1 Why a pattern? 
 
The axial equilibrium of forces is able to provide the 
required number of fibre bundles, according to their 
strength. An important assumption here is that the 
created laminate is homogeneous in terms of 
equatorial thickness distribution. This implies that 
the rovings must be equally distributed, without 
leaving any gaps or creating excessive overlaps. 

The creation of winding patterns makes 
obviously only sense when the same roving 
placement procedure is repeated. Therefore, it only 
applies on rotationally symmetric objects, at least, as 
formulated in this paper. An example of a few 
windings on a typical pressure vessel is given in 
figure 3:  

 

 
Fig. 3. Pattern on a pressure vessel (one round 

of circuits completed)  
 
One can observe that the vessel periphery is divided 
into a certain number of partitions (p). After 
completing this round, the next wound circuit should 
lay exactly next to very first one; this placement will 
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initiate the second round of windings. After (k) 
rounds the entire periphery should be covered. It is 
previously mentioned that, after completing the first 
round, the subsequent circuit lays adjacently to the 
very first wound circuit: this holds true in the case 
where the manufacturer intents to create a single 
layer of rovings. In the case of multiple layers (d >1) 
the overlap should preferably be (1/d). For example, 
if two layers are desired, the overlap after the first 
completed round must 50%; in the case of 3 layers 
this should 33.3% and so on.  

 
3.2 Pattern conditions 
 
In figure 4 we provide a schematic representation of 
how a pattern works. The figure can be regarded as 
the top view of a rotationally symmetric mandrel, 
covered with a particular number of circuits.  
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Fig. 4. Schematic representation of a winding 

pattern 
 

Let us assume that the winding procedure 
begins on the upper half of the mandrel. When 
passing the equator in a downward direction, we 
indicate the circuit by a black dot. The white dots 
reflect on the upward passage of the equatorial 
periphery. The visible roving trajectories are 
represented by the continuous black lines; the 
rovings, placed on the lower hemisphere are given 
by doted lines.  

Starting at point A, the roving crosses for the 
first time the equator (B) and proceeds to the lower 
(non visible) part.  The second crossing with the 

equator takes place in an upward direction (C). After 
this, the roving passes the polar opening (D). At this 
point, the second circuit (winding) is started, which 
proceeds towards point (E). The angular difference 
between points E and B (∆K) is the first major 
parameter that determines the winding pattern. The 
second one is the width of the roving itself. Since the 
roving does not cross the equator in an exactly 
perpendicular fashion but with a winding angle αeq, 
(see also figure 3) the roving width must be 
corrected according to: 

 

eq

roving
pr

b
b

αcos
=                (16) 

 
where αeq  is given by equation (5) for Y = Yeq. The 
arc covered by the roving width is ∆ϕ. 

Suppose now that we aim to create a single 
wound layer. In this case, circuit #15 must be placed 
exactly before or after the first circuit (the terms 
before or after are defined according to the direction 
in which the circuits propagate). The first way of 
placement is referred to as lagging, and the second 
as leading. If e.g. a number of two fully closed 
layers is required, the overlap should be 50% and so 
on.   

Let the angular difference between two 
adjacent circuits be ∆K. This angular value fits p 
times in the equatorial periphery. In every partition 
∆K, a number k of roving arcs ∆ϕ  will fit. For a 
lagging pattern, the p-th circuit should be placed just 
before winding #1, and for a leading pattern the 
roving #p+1 should be placed just after #1. 
Depending on the desired number of layers, a certain 
overlap is required. Hence [13]: 

 

patternlagging
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Although intuitively correct, we should keep in mind 
that the participating parameters are all integers. 
Therefore, an integer solution for equation (17) is 
impossible. The correct way for providing the 
winding equations is [8]: 
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where nd is treated as a single integer parameter 
here. These equations have only an integer solution 
when the involved parameters do not have a 
common divisor. 
 
3.3 Pattern parameters 
 
As previously indicated, there is an angular 
difference ∆K (φ-difference, figure 2) between two 
adjacent windings. For convenience this difference 
must be limited into the 2π interval [4, 8, 13]: 
 

])2,mod(,)2,mod(min[ ππ −ΦΦ=∆K   (19) 

 
where Φ stands for the angular propagation between 
two adjacent circuits, as provided by the roving path 
calculation (for details see [15] and section 3.4 in 
this paper). The second important parameter is the 
arc length, occupied by a single roving: 
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Now we are able to determine the pattern 

parameters: 
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Where IP stands for “integerpart”; the biggest 
integer contained in the argument, and C for 
“ceiling” the smallest integer containing the 
argument. We do not use here the exact definitions 
that also deal with negative arguments since the 
entire set of them is here positive. The reason for 
choosing the C function for k and nd is to ensure a 
small overlap of the rovings at the equatorial 
periphery (which provides the largest space to be 
covered). In the unlikely event where Φ and the 
roving width do already provide integer values for p, 
k and nd, the overlap within one layer becomes 
equal to zero. 
 
 
 

 
4 Structural design & pattern creation 
 
4.1 Angular φφφφ-propagation 
 
In [15] we have shown that the production of 
composite pressure vessels exclusively relying on 
geodesic trajectories is not possible, in particular for 
small q-values. To cope with this, we have proposed 
the application of friction for the generation of 
partially non-geodesic winding trajectories. The 
main goal of this application is the creation of a 
winding angle equal to 90° when passing the polar 
periphery; this enhances continuation to the next 
wound circuit. The friction has been introduced in 
the form of a step function, where, depending on the 
step length (non-geodetically placed roving length) 
and height (amount of friction), the winding angle 
could possibly become less than 90° or exceed this 
value. In the first case, continuously winding of the 
object is not possible, in the second case the path 
will “stick” on a singularity; it will follow the 
periphery of the mandrel at some altitude. Non-
geodesic winding takes usually place near the poles 
(end domes) of the vessel since the structural 
performance reduction over there can be alleviated 
by the (usually applied) flanges. The adapted step 
function for the friction is [15]: 
 

2
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where θ  is an elliptic coordinate, defined as [4, 5]: 
 

22

sincos)( 22
min

222

πθπ
θθθ

≤≤−

+=

where

YYY eq

 (23) 

 
In equation (22), the parameter m is the step height 
and γ the θ-range over which the friction is applied. 
The resulting non-geodesic winding angle 
distribution is denoted as [15]: 
 

2
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Based on this expression, the associated φ-
propagation is then given by [4, 15]: 
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where G (=Y’2+Z’2) and E (=Y2) are coefficients of 
the first fundamental form (for the derivation of Z(q, 
r, θ) we refer here to [15]).  

The [γ, m] combinations providing αng(q, r, γ, 
m, π/2) = π/2 (tangential roving placement at the 
pole) are given by a function m(γ). In figure 5, we 
provide an example of such a graph for [q = 3, r = 
0]. 

 
Fig. 5. Friction coefficient m for tangential 

fibre placement at the pole as a function 
of the step interval γ 

 
As a complete wound circuit passes four times 

the vessel meridian, the total turning around Φ is 
given by: 
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Since q and r are fixed (shape and load parameters), 
the only way to vary Φ is to choose for another γ-
value. 
 
4.2 Total number of circuits 
 
The second pattern parameter combination, the 
roving dimensions and implicitly the minimum 
number of rovings (for structural integrity) have to 
be related to the pattern parameters. With a given 
roving strength F, the required number Nf of rovings 
that cross the equator is given by equation (15). As 
depicted in figures 3 and 4, a wound circuit will 
cross the equator twice, therefore we can write: 

 
ndN f 2=    (27) 

 
At the same time, the roving strength is given by: 
 

btF σ=    (28) 
 

where b is the roving width, t the thickness and σ  
the allowable stress. Combination of (15), (27) and 
(28) leads to: 
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This equation does in essence summarise the 
pressure vessel design procedure. Namely, the total 
number of windings (that refer to possible patterns) 
is the result of the shape and axial load parameters 
[q, r], the relative fibre strength (as compared to the 
internal pressure) and the relative roving cross 
section (as compared to the surface of the polar 
opening).  
 
4.3 Number of layers 
 
Since the number of overwound layers must be an 
integer number, we will prove here that the strongest 
fibre does not automatically imply the achievement 
of the optimal pressure vessel. Substitution of 
equation (13) into (20) leads to a [q, r]-defined 
expression for n. For simplicity, we have used here 
(21c) without the ceiling function since the aim is to 
derive an integer d. To achieve this, we substitute 
the obtained expression into equation (29) and solve 
for d. The result is: 
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(30) 
 

Note that the result is independent of the roving 
width. Obviously, the vessel strength is determined 
by the strength and thickness of the created laminate 
and not by the width of the individual rovings; a 
large number of narrow rovings provides the same 
result as a small number of broad rovings.  

Let us assume now that Pr and ρ0 are given. 
The challenge now is to locate proper σt products 
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that are able to provide integer d-values. Rewriting 
of equation (30) leads to: 
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This means that for a particular vessel shape 
(defined by [q, r]), size (defined by ρ0) and pressure 
(Pr), one should choose a roving of particular 
strength and thickness to achieve an integer number 
of layers. Note that the result of equation (31) is 
actually the roving strength per unit width.  
 
5 Matching procedure 
 
5.1 Angular propagation criterion 
 
During winding (according to some friction 
distribution), the angular difference between two 
circuits is given by equation (19). This value should 
match the angular propagation, as required by the 
winding pattern (equation (32)). To determine this, 
we recall equations (21) where we assume now that 
the integer quantities are given. Hence, the round-off 
to integers is here not necessary. Plugging these 
expressions into respectively equations (18a) and 
(18b) leads to: 
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5.2 Polar passage 
 
As outlined in subsection 4.1, the main parameter 
for determining Φ (which in its turn determines ∆K 
as provided by the roving path, equation (19)) is γ 
(equation (22)). For every γ there is a friction value 
m such that the winding angle during pole passage is 
exactly equal to 90°. Hence, the friction should 
belong to the corresponding curve, as depicted in 
figure 5. For convenience, the graph can be used in a 
discretised form during the pattern determination 
procedure (due to the discrete solution procedure for 
determining this curve, see [15]). 
 
 
 

5.3 Pattern selection 
 
Next to the γ-vector, the designer must select a range 
for the applicable roving width (e.g. 2 [mm] ≤ b ≤ 10 
[mm]). The b-interval is then divided according to a 
particular increment (e.g. 0.1 [mm]). For every {b, 
γ} combination, the corresponding ∆ϕ (equation 
(20)) and thereof the nd (equation (21c)) can now be 
determined. Combination of equations (26), (19) and 
(21a, 21b) leads to the quantification of p and k 
respectively. The obtained integer-combinations are 
then plugged into equation (18) to check which ones 
do lead to a pattern (the result should respectively be 
+1 or -1). The selected integer combinations are then 
substituted into equation (32) to determine which 
angular propagation can generate the found pattern 
in a perfect way (no round-off). Every “successful” 
combination is identified by its {b, γ} vector. For a 
“successful” {b, γ}, the path-generated ∆K can be 
calculated with the aid of equation (19). The result is 
then compared to the angular propagation, as 
provided by (32).  
 
5.4 Refinement 
 
In general, the results of (32) and (19) are not 
exactly identical. At the b-value where this 
difference is the smallest, the exact angular 
propagation (as dictated by (32)) can be obtained by 
tow different ways: 
 

1. Additional turning around at the polar areas 
(usually in the order 0.1°). The designer 
should be aware that the correction should 
be positive; hence it should tend to enlarge 
the Φ-quantity. 

2. In the vicinity of the pattern-generating {b, 
γ} vector, search for a γ or b-value that is 
able to provide an exact ∆K match. 
Condition: the results of equation (19) and 
(32) should be identical. The proper  γ or b-
value can be found by standard root 
searching procedures. 

 
6 Conclusions 
 

In this paper we have presented a methodology 
for the integral determination of winding patterns, as 
part of the design procedure for composite pressure 
vessels. The main issues tackled here are the 
appropriate selection for the roving materials and 
dimensions in such a way that the required number 



 

9  

COMPOSITE PRESSURE VESSEL DESIGN: 
INTEGRAL DETERMINATION OF WINDING PATTERNS

of overwound layers is an integer number, and the 
definition of winding patterns that enable the 
realisation of the minimum number of circuits while 
still complying with structural integrity demands. 

After a short outline regarding the roving-loads 
equilibrium for filamentary pressure vessels, the 
minimally required number of (particular) rovings 
has been determined. Next, the theory for the 
construction of winding patterns has been explained, 
followed by the identification of the associated 
deterministic parameters. As the main parameters 
reflect to the roving width and the turnaround angle, 
a procedure is outlined where the pattern related 
turnaround values are matched to the path–generated 
angular propagations. An important constraint here 
is the a-priori selection of suitable rovings in terms 
of mechanical properties and dimensions for 
obtaining an integer number of overwound layers.  

For the derivation of the roving path geometry, 
we assumed here partially non-geodesic winding 
where the friction distribution is given in the form of 
step function. Due to this generic approach, the 
complete range from entirely geodesic to 100% non-
geodesic fibre placement can be covered. At the 
same time, the provided friction distributions ensure 
perfectly tangential polar passage for winding 
continuation (see also [15]). 

Perhaps the most important contribution of this 
paper is the derivation of an equation for the a-priori 
selection of the perfect strength / thickness 
combinations for the utilised rovings; these should 
lead to an integer number of layers while exactly 
matching the strength requirements. In addition, it is 
proven here that selecting the strongest roving does 
not always lead to the lightest solution. 

With the given friction distribution and roving 
characteristics, the automated pattern search and 
refinement procedure shows favourable properties; it 
is fast, straight forward, reliable and provides the 
entire data range for allowing the designer to decide 
which patterns will fit the manufacturing demands in 
the best way possible. The provided results 
collection consists of the best roving (in terms of 
material and thickness), number of required 
windings, roving width (belonging to a 
predetermined range), and amount of friction. In 
addition, depending on the parameter selection for 
achieving the winding pattern (fine-tuning), one can 
choose between additional turnaround, slightly 
modified roving width (which in practice makes no 
difference) or slightly modified friction values (that 
still belong to the curve providing perfect passage 
towards following wound circuits). In particular, 

consideration of equations (31) and (32) provides a 
usable tool for better pressure vessel designs.  

As a part of future research, the constructed 
algorithms have to be generalised in such a way that 
they will become parameterisation-independent. For 
this approach one can utilise the coefficients of the 
first fundamental form, as provided by the 
differential geometry branch. 
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