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Abstract  

Accurate optimal design solutions for most 
engineering structures present considerable 
difficulties due to the complexity and multi-modality 
of the functional design space. The situation is made 
even more complex when potential manufacturing 
tolerances must be accounted for in the optimizing 
process. The present study provides an original in-
depth analysis of the problem and then a new 
technique for determining the optimal design of 
engineering structures, with manufacturing 
tolerances in fiber orientations and layer 
thicknesses accounted for, is proposed and 
demonstrated. The numerical examples used to 
demonstrate the technique involve the design 
optimization of anisotropic fibre-reinforced 
laminated pressure vessels. It is assumed that the 
probability of any tolerance value occurring within 
the tolerance band, compared with any other, is 
equal, and thus it is a worst-case scenario 
approach. A genetic algorithm with fitness sharing, 
including a micro-genetic algorithm is used and 
implemented in the technique. 
 
 
1 Introduction  
 

When engineering structures are 
manufactured, the design may deviate from their 
intended design values. These deviations are usually 
referred to as manufacturing tolerances. Though the 
deviations can be relatively small, their impact on 
overall performance of the structure can be 
significant. It is reasonable that determining the 
optimal design with manufacturing tolerances 
accounted for can help to predict accurately such 
optimal characteristics like maximum applied load 
or minimum thickness, and by doing so save 
materials and, perhaps, save the structure from 
failure. 

 
A few researchers have described methods for 
dealing with manufacturing tolerances. A pioneering 
work in this field was published by Chao et al [1] in 
1993. This article was the first of its kind to develop 
a methodology that is focused upon addressing this 
crucial void in composite materials. Among more 
recent contributions it is worth mentioning a work of 
Bauer and Latalski [2] who considered the issue of 
manufacturing tolerances in dimensions with regard 
to design optimization, when the objective is 
minimum weight. A standard solution algorithm 
with the Kuhn-Tucker theorem is used with a 
variable method, and the method is illustrated using 
the standard ten bar benchmark problem; typical for 
testing algorithms in structural optimization. Liao 
and Chiou  [3] formulated a robust optimum design 
problem by including the sensitivities and 
uncertainties in the modified constraints.  This 
method involves both optimization and anti-
optimization techniques; however, the anti-
optimization sub-problem is solved analytically. In 
two papers by Walker and Hamilton [4, 5], a 
technique for optimally designing laminated plates 
with manufacturing tolerances present in the design 
variable (which is the fibre orientation) is described. 
The objective is to maximize the buckling load 
carrying capacity and in the first, a closed form 
solution for plates is implemented, whilst in the 
second, the FEM is used. The techniques are aimed 
at optimally designing for the worst-case scenario, 
and the results presented (as a means of illustrating 
the methodology) demonstrate the importance of 
accounting for manufacturing uncertainties. A more 
efficient design optimization algorithm than the one 
described by Walker and Hamilton is presented in a 
paper by Tabakov and Walker [6]. The design 
optimization of anisotropic pressure vessels with 
manufacturing uncertainties in the fibre orientation 
(only) accounted for is tackled by way of illustrating 
the technique. This paper expands on the theme and 
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focuses on the effect of tolerances in both the fibre 
orientations and layer thicknesses. 
 
2 Problem description  

   Consider an arbitrary one-dimensional 
function y = f(x) of the argument x describing the 
response of some engineering structure to the 
change in the argument x (see Fig. 1). The global 
optimum (maximum in this example) is achieved at 

)(nom
optxx =  on the interval bxa ≤≤ where the 

solution is feasible. In engineering optimisation a 
value of x is usually called a design parameter and 
can be any geometrical or physical property which 
can be intentionally changed. For example, in a 
laminated fibre reinforced composite structure it can 
be a fibre orientation in a layer, the change of which 
will result in the change of the maximum 
permissible external load. Evidently in real 
applications the number of design parameters can be 
higher than one. 
 

 
 

Fig. 1. Effect of manufacturing tolerances on the 
objective function of an arbitrary 1-D problem. 

 
When engineering structures are manufactured, the 
design parameters may deviate from their intended 
design values. These deviations are usually referred 
to as manufacturing tolerances. Though the 
deviations can be relatively small, their impact on 
the overall performance of the structure can be 
significant. Thus, determining the optimal design 
with the manufacturing tolerances accounted for can 
help to predict accurately such optimal 
characteristics like maximum applied load or 
minimum thickness, and by doing so save materials 
and, perhaps, save the structure from failure. 

Fig. 1 demonstrates how the actual value of a design 
parameter can be determined. The solid line shows 
the nominal function, which is the intended design; 
the two other trendlines represent the cases of 
possible deviations, namely upper and lower 
tolerance. The actual value of the design parameter 
will correspond to the coordinate of the point where 
these two graphs intersect. In such a case )(act

optx  can 

be either greater or less than )(nom
optx  whereas the 

function value is always )()( nom
opt

act
opt yy ≤  in the 

maximization problem or )()( nom
opt

act
opt yy ≥  in the case 

of finding the global minimum. It can be seen from 
the figure that the actual parameter )(act

optx  must be 

used for design purposes. In this case the value of 
the function will not drop below )(act

opty , which 

corresponds to the worst-case scenario. However, if 
the value )(nom

optx  of the design parameter is used, 

then in the worst case scenario the magnitude of the 
function will drop even more, namely by the value 
of � (see Fig. 1). Understanding this presents a 
fundamental issue in analysis of structures that may 
have manufacturing tolerances when constructed. 
 

As Fig. 1 suggests, the evaluation of the 
intersection point in a one-dimensional optimisation 
problem presents no special difficulties. However, 
this problem becomes rather complicated with an 
increase in the dimensionality of the objective 
function. Geometrically, the domain of points 
representing the intersection of two sister functions 
is a hyper-surface of the dimension N - 1, where N is 
the dimension of the objective function. For 
example, in the case of a two-dimensional problem 
it will be a line, three-dimensional is a surface, four 
and more dimensions is a hyper-surface. The 
optimal solution is found on this line, surface or 
hyper-surface provided it is a common domain for 
all the functional (hyper-) surfaces. We would call 
such a domain the solution line or solution (hyper-) 
surface, depending on the considered problem. It is 
reasonable to assume that multimodal estimation of 
the actual global optimum of such problems is 
difficult to accomplish, especially for higher-
dimensional problems, due to the curse of 
dimensionality. Moreover, the number of 
intersecting functional surfaces increases 
exponentially as the dimensionality of the problem 
increases. Generally, if there is a probability that 
every design parameter can experience deviation 
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from its intended value in either direction, the 
number of such surfaces will be 2N. While in the 
simplest case of a one-dimensional problem only 
two lines intersect (the nominal case is not taken 
into account), in the case of two dimensions we have 
already four surfaces, which are 

))(),(( ytyxtxff uuuu ++=  

))(),(( ytyxtxff llll −−=                                  (1) 
)(),(( ytyxtxff luul −+=  

)(),(( ytyxtxff ullu +−=  

Where ut  and lt  are upper and lower tolerances 
respectively. To gain a better understanding of how 
the solution line is formed in the previous example 
we shall use ellipses to illustrate schematically, as 
shown in Fig. 2. The thick bold line (view from the 
top) here is the common intersection line for all the 
four surfaces considered. The solution will be the 
maximum (or minimum) point on this line. 
Obviously, in a real problem this looks different but 
the geometrical principle is the same.  
 

 
 

Fig. 2.Schematic demonstrating the solution line in a 
2-D design problem. 

 
 
3 Laminated Pressure Vessels  
 

Fibre-reinforced laminated structures are 
probably the most tolerance-prone of engineering 
structures because of the fabrication technologies 
used. These structures are manufactured as the 
material is fabricated from constituents, viz. 
reinforcing fibres and a plastic matrix, which must 
be cured as part of the processing. This can often 
lead to deviations from the intended design, 
particularly with regard the fibre orientations. In 
order to illustrate the methodology described above 

we consider a rather complex engineering problem: 
finding the burst pressure in a laminated anisotropic 
cylindrical pressure vessel of finite length using an 
exact elasticity solution (see Fig. 3). The cylinder is 
constructed of filament-wound layers with a fibre 
orientation of �θ± . The axis of anisotropy 
coincides with the axis of symmetry Oz of the 
cylinder and the stresses act on the planes normal to 
the generator. Unfortunately, the mathematical 
foundations of the analysis are quite cumbersome 
and thus only are basic equations are given next in 
order to help the reader better understand the theory 
used. The interested reader can find the detailed 
solution in [7] or should contact the authors. 
 

 
Fig. 3. Geometry of an anisotropic cylindrical 

pressure vessel. 
 

3.1 Computation of stresses 
 
 
The distribution of the stresses will be identical 

in all cross sections and will depend only on the 
distance r from the axis. Therefore, for every layer k 
the stresses are expressed in terms of stress 
functions proposed by Lekhnitskii [8] 
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and longitudinal stresses 
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Moreover, due to symmetry 
0)()( == k

r
k

rz φττ                                                        (4) 

The boundary conditions on the internal (r = a0) and 
external (r = anl) surfaces are specified as 

nlnl
nl

rr papa −=−= )(;)( )(
00

)1( σσ                         (5) 
At the contact surfaces of adjacent layers we have 
the following conditions 
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The equilibrium of forces on the end surfaces gives 
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where F is the applied axial force. 
      With the regards to the conditions (6) and 
taking into account the assumptions on physical and 
geometrical properties given above, the general 
solution has the following form [8]: 
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where )()(
1
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k
k gg κκς and )(

_
kg κ  are �-dependent 

coefficients, and )(k
ijβ  are elastic constants given by 
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The stresses can be calculated from Eq. 2 as 
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By satisfying the boundary conditions (5) and (6) 
the constants C1 and C2 can be expressed in terms of 
the constant C. By introducing the notations 
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the final expressions for the stresses can be written 
as 
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In Eq. 13 pk-1 and pk denote the normal forces acting 
on internal and external surfaces of the k-th layer. 
The remaining unknown forces and constant C are 
determined from the boundary conditions (6) and 
(7). Next, the system of equations for the calculation 
of the unknown interface forces p1, p2,..., pnl-1 and the 
constant of integration C are derived. The first nl - 1 
equations of the system of equations are derived by 
satisfying the displacement continuity conditions at 
the interfaces, i.e.  

)1()( += kk
φφ εε  at kar =                                        (14) 

which gives us the following system of nl-1 
equations 
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1,,2,1,0)1()( −==− + nlkkk
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By substituting the above expressions into the 
equations for the boundary conditions (15), and after 
rearranging terms and simplification, we arrive at 
the set of equations for unknown forces and the 
constant of integration C in the following form: 
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The unknown coefficients �’s are computed with 
the help of the equations for the stresses (13) and are 
not listed here. 
 

The total number of unknown terms in the 
system of equations (17) is equal to the number of 
the layers nl, whereas the number of equations is nl-
1. Therefore, in order to solve this system we need 
one more equation, namely Eq. 7 which contains the 
piecewise integral. After the integration the 
additional equation can be written in the following 
form 
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Unlike the system (17), the expression (18) 
represents only a single equation calculated as a sum 
through the thickness, with k varying from 1 to nl. 
The derivation and the representation of the 
coefficients �’s is rather complicated and is not 
presented in this paper.  

In order to get better understanding of the 
system of governing equations, we express it in 
matrix form: 
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computed from Eq. 17 and 18. It should be noted 
that in general jiij bb ≠ . All the terms �’s and �’s 

(which include coefficients �’s) depend on the point 
where they are calculated within the thickness of the 
layer, namely at the bottom or at the top of the layer. 
Therefore, to distinguish them we shall use indices b  
for bottom and t for top. Then the coefficients bij can 
be defined as:  
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• The last row 
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The right-hand side vector usually contains only 
three nonzero components if there are both the 
internal and external pressures applied, which are 
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  Finally, it should be noted that when the 
winding angle �k = 0° or 90° we are dealing with an 
orthotropic layer with cylindrical anisotropy, which 
means that there are two planes of elastic symmetry, 
radial and tangential. Then )(

34
kα = )(

14
kβ  = )(

24
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)(k
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kg  = 0 and tangential stresses )(k

zφτ  vanish. 

In the case when �k = 0° 
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and some denominators containing kκ  become 
equal to zero that leads to singularity. In actual 
computation, this difficulty can be overcome by 
assigning a very small number for �k (e.g. 0.001°) 
when �k = 0°. 
 
 
3.2 Failure criterion 
 

The strength of filamentary composites is 
determined by the tensile and comprehensive 
strengths in the fibre directions and by the shear 
strength of the composite material.  Failure in 
tension usually occurs when the fibers break, 
whereas failure in compression involves debonding 
of the fibres and the matrix material as a result of 
micro-buckling. Failure in shear is usually 
characterized by crack propagation through the 
composite material. In composite structures, tensile, 
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comprehensive and shear stresses may result even 
from simple loading conditions, and therefore the 
failure mode of composite structures is rather 
complicated.   

Using the Tsai-Wu failure criterion [9] we 
attempt to calculate the maximum burst pressure 
with respect to the fibre orientations in the layers 
and taking into account the manufacturing 
tolerances. The assumption of the Tsai-Wu three-
dimensional failure criterion is that there exists a 
failure surface in the stress space expressed in the 
following scalar form 

1)( =+= jiijiik FFf σσσσ                             (20) 

where k, i, j =1, 2, . . . ,6; Fi and Fij are strength 
tensors of the second and forth rank, respectively. It 
is noted that this equation is applied to each layer to 
check for failure or otherwise. In case of laminated 
pressure vessels possessing cylindrical anisotropy, 
Eq. 20 for the k-th layer can be written in the 
following expanded form:  
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and Xt, Xc are, respectively, longitudinal tensile and 
compressive strengths, Yt, Yc are those for the 
transverse direction and S is the shear strength. It 
should be noted that the normal stresses ,)(k

iσ  i = 

1,2,3 and shear stress )(
12

kτ  are stresses in the 
material coordinates and can be computed as 
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The design objective is the maximization of 
the burst pressure Pcr subject to the failure criterion 
Eq. 20. The design problem for a multilayered 

pressure vessel of a given thickness ratio b/a and 
number of layers nl can be stated as 
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The negative root for )(k
crP  does not have any 

physical meaning and the positive value only must 
be taken into consideration. 

The optimization procedure involves the 
stages of iteratively improving nlkk

opt ,,2,1,)(
�=θ  

in order to maximize Pcr for a given radius and 
thickness ratio. 
 
 
4 Optimization 

 
  For the purpose of visual illustration we use 
one and two layers, but the approach used is the 
same for any number of design parameters (layers) 
except that the nesting algorithm should be used for 
higher dimensions.  The ratio of the external radius 
to internal in the cylinder used in the example is 
b/a= 1.1 while the length is arbitrary. The material 
properties are those for a typical T300/5208 
graphite/epoxy material: E1 = 1.811 x 105MPa, E2 = 
1.03 x 104MPa, G12 = 7.17 x 103MPa, �12 = 0.2897. 

 

4.1 Uncertainties in fiber orientations 
 
  Furthermore, we assume that on the interval 
[ �� 900 ≤≤ θ ] the desired fibre orientation in the 
layer may deviate from its intended design value by 
tu = 13° and tl=7°, which are upper and lower 
tolerances, respectively. 
 



 

7  

THE EFFECT OF MANUFACTURING TOLERANCES ON THE 
OPTIMAL DESIGN OF ANISOTROPIC PRESSURE VESSELS

 
 

Fig.4. Effect of manufacturing tolerances on the burst pressure of pressure vessel with one ply. 
 

 
Fig.5. Distribution of the nominal burst pressure of pressure vessel with two plies. 
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Fig.6. Effect of manufacturing tolerances in fibre orientations on the burst pressure with two plies. 

 
 

Fig.7. Effect of manufacturing tolerances in layer thicknesses on the burst pressure with two plies. 



 In reality, the probability of any tolerance 
value within the tolerance band is variable, usually 
higher when closer to 0° or 90° and smaller in 
between. For simplicity, we ignore this fact, as it is 
irrelevant for the demonstration of the technique.  
  Fig. 4 shows three trendlines which represent 
the nominal case (viz. critical pressure Pcr = 47.90 
MPa at the angle � = 54.45° along with the upper 
and lower bounds (viz the values at � + tu and � - tl) 
and clearly demonstrates how dangerous the 
manufacturing tolerances can be should they occur 
during the manufacture of the pressure vessel. It can 
be also seen from the figure how sensitive the burst 
pressure is to the change in the fibre orientation. 
The intersection point of the upper and lower 
tolerance trendlines clearly indicates the new value 
of the angle � =51.16° which must be chosen 
instead of the nominal value when the cylinder is 
manufactured. We discover that the actual value of 
the burst pressure drops from the nominal one by 
60.21% to 19.06MPa. Furthermore, if we were to 
specify the nominal value of the orientation and yet 
during fabrication tolerances were incurred, the 
burst pressure could be as low as 14.99MPa (at 
54.45+13°), which is 69% lower than the expected 
(nominal) value. Although fractions of degrees 
usually are not taken into account by the 
manufacture, for academic purposes we calculated 
the exact value of the maximum critical pressure 
and the relevant angles.  
   Fig. 5 shows the dependence of the burst 
pressure in the two-layered cylinder in the case 
when no manufacturing tolerances occur (nominal 
case). The exact critical pressure in this case is Pcr = 
48.14MPa found at   �1 = 50.06° and �2 = 57.88°. 
Applying the manufacturing tolerances tu = 13° and 
tl = 7° we obtain the four surfaces shown in Fig. 6 
and after optimisation the actual value of the burst 
pressure is determined as 28.48MPa at �1 = 66.11° 
and �2 =34.70°. This burst pressure has dropped by 
40.84%. Again, to show the significance, if we 
were to specify the nominal fibre orientations and if 
tolerances were incurred during manufacture, the 
burst pressure could be as low as 15.32MPa, which 
is 68% less than the expected (nominal) value. 
  For a final comparison, in the case of five-
layered cylinder the nominal value of the 
maximum burst pressure is 51.45MPa found at 
46.41/45.79/45.72/49.77/75.37 degrees. After 
applying the tolerances we arrive at the actual value 
of the critical pressure of 32.85MPa found at 
90.00/32.71/65.38/35.14/37.26 degrees. Here the 
difference is 36.16%. This example clearly 

demonstrates how important it is to take the 
manufacturing tolerances into account in the design 
optimisation stage. It also illustrates that it is much 
safer to use a few layers instead of one. However, 
calculations show that after about 10 layers there is 
not much improvement in the performance of the 
pressure vessel. Finally, to again emphasize the 
importance of including the manufacturing 
uncertainty, if we specify the nominal and during 
fabrication tolerances are incurred, the worst case 
scenario would result in a burst pressure of 18.31 
MPa, which is 64% less than the actual.  
 
 
4.2 Uncertainties in Layer Thicknesses 
 

It is apparent that if the thickness gets 
smaller the strength of the pressure vessel will 
decrease and this scenario must be taken into 
account at a design stage. The deviation in the 
bigger direction should not worry us much from a 
structural point of view; however, there is a concern 
about the total weight and the amount of the 
material used.  

As an example we consider only a two-
layered special case where the total thickness of the 
layer package is constant, but the thicknesses of 
individual layers can deviate from their original 
design up to 20%. Again, we consider only the 
worst case scenario, where only the most extreme 
parameters are taken into account. Fig. 7 
demonstrates the case when there are 
manufacturing uncertainties in the layer thicknesses 
and no uncertainties in the fibre orientations. 
Contrary to the previous example the calculations 
show that there is no sharp drop in the critical 
pressure when comparing with the nominal case: 
Pcr.= 47.94MPa at 53.29°/55.23°. However, if all 
the uncertainties, in fibre orientations and layer 
thicknesses, occur simultaneously, the impact of the 
uncertainties in layer thicknesses becomes more 
pronounced: Pcr   = 23.26MPa at 66.82°/33.28°, 
which is 18% less than the case with the 
uncertainties occurring only in the fibre orientation. 
Unfortunately, due to complexity, this example 
cannot be graphically presented.     
    The computational time for the analysis in this 
example is of no concern because a closed-form 
solution used, but this is not the case when the 
solution is based on a complex finite element 
analysis. In such cases, a high number of function 
evaluations might become a critical factor. 
Therefore, the optimising algorithm should be as 
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efficient as possible. In our case we used a high 
number of iterations to obtain the optimum 
solution, or very close to it. With a population of 50 
the maximum number of iteration was 10,000, 
which amounts to 500,000 function evaluations. In 
reality there is no need for such a high number of 
function evaluations; about 95-98% of the accuracy 
is already achieved after 1,000 iterations. It also 
should be noted that the optimising procedure is 
used only once for each structure under 
consideration, before manufacturing takes place, 
and the time invested in the analysis is paid off 
later.  
 
 
5 Conclusions 
 

In this paper, a new generalized technique for 
optimally designing engineering structures with 
manufacturing tolerances in the design variables is 
presented. It is assumed that there can be an upper 
and lower tolerance in each case, and thus for a 
problem with N dimensions, it is demonstrated that 
the solution lies within the common domain of the 
2N+1 possible hyper-surfaces. Furthermore, it is 
also assumed that the probability of any tolerance 
value occurring within the tolerance band, 
compared with any other, is equal, and thus it is a 
worst-case scenario approach. In order to determine 
the optimum solution, the technique utilizes a 
genetic algorithm with fitness sharing, including a 
micro-genetic algorithm, which has been found to 
be very suitable (viz. accurate, fast and efficient), 
particularly when the dimensionality of the problem 
is high. 
 

In order to demonstrate the technique, the 
maximization of the burst pressure of a laminated 
anisotropic cylindrical pressure vessel is 
considered. The design variables are the ply fibre 
angles and the layer thicknesses, and thus the 
examples are considered with tolerances in these 
variables accounted for. Initially, when one layer is 
used, the difference between the actual and nominal 
burst pressure is extreme (60.2%) and this clearly 
demonstrates the point. When two layers are used, 
the difference is reduced to 51.68% The point is 
driven home when one considers specifying the 
nominal values of the fibre orientations (say in the 
five ply case) and tolerances are incurred during 
fabrication: the burst pressure can be as much as 
64% less than expected. 
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