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Abstract  
 

In the context of marine vehicles made of 
advanced composite materials and of related 
structural components, the present work is devoted 
to the development of a dynamic hydroelastic 
response model. Toward this end, a moderately 
thick-walled anisotropic beam theory is used to 
idealize the load-carrying structural part of the 
hulls. The multitude of exotic elastic couplings 
provided by anisotropy and lay-ups are 
incorporated. By integrating the unsteady 
hydrodynamic loading mode, the governing 
hydroelastic equations in a special case of 
circumferentially asymmetric stiffness (CAS) lay-up 
are developed. The concept of elastic tailoring is 
exploited for the alleviation of the dynamic response 
of the hulls subject to slamming impact. It is 
demonstrated that the directionality property of 
composite materials and lamination lay-ups are 
efficient on the reduction of whipping response. 
 
 
1  Introduction 

 
To facilitate the design of marine vehicles, 

various structural and hydroelastic models based on 
beam theories have been developed to predict, in the 
preliminary design stage, their dynamic behavior 
and stability, see e.g., [1-7]. However, in the context 
of marine vehicles made of composite materials, 
there is a total absence of such studies. Compared 
with the Euler-Bernoulli, Timoshenko and Vlasov's 
metallic beam-like structural models (see e.g., [8]), 
their composite counterparts, due to their inherent 
material directionality and lamination lay-ups, can 
bring a dramatic enhancement of their performance. 
Such enhancement can be attained by the elastic and 
hydroelastic tailoring. The former approach consists 

in the proper use and exploitation of the anisotropy 
of the involved materials and lay-up lamination to 
effectively modify the distribution of the structural 
stiffness, while the latter one is to modify, by 
exploiting the anisotropy of the materials and lay-up 
lamination, the hydroelastic coupling such that the 
structural response and/or stability can be enhanced. 
The objective of the first approach is to change the 
stiffness distribution while the second approach 
benefits mainly from the enhanced fluid-structure 
interaction. In the context of aeronautical structures, 
the counterpart techniques referred to as the 
aeroelastic tailoring has been successfully used to 
address the chronic divergence problem of forward-
swept wings, as demonstrated by Grumman X-29 
aircraft [8]. 

As a prerequisite toward implementation of 
elastic and hydroelastic tailoring, a number of issues 
have to be investigated, which include: 

� Multitude of elastic couplings, which 
involves various couplings among bending, 
twist, extension, transverse shearing, etc.; 

� Implication of non-classical effects such as of 
transverse shear and of warping (restraint) in 
the context of anisotropy of the materials and 
the moderate thickness of the hull's walls.  

In this paper, a refined first-order transverse 
shearable anisotropic beam theory, which was 
originally developed and validated in a number of 
previous works by [9-12] will be used to model the 
moderately thick-walled composite hulls. By 
integrating the unsteady hydrodynamic loads, the 
governing hydroelastic equations will be fully 
derived for the special lay-up case of 
circumferentially asymmetric stiffness (CAS) 
configuration. As will be shown in the sequel, this 
CAS configuration can provide two sets of 
independent elastic couplings: (1)vertical 
bending/vertical transverse shear/extension; and 
(2)horizontal bending/horizontal transverse 
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shear/twist. These two sets idealize the couplings of 
motions encountered in practice (see e.g., [4, 6]). 

 Although an actual hull is of considerable 
complexity in its shape, here we restrict ourselves to 
the case of the uniform, closed cross-section beams. 

The derived governing equations are then 
applied toward the investigation of the hydroelastic 
response of the hulls subject to bottom slamming-
like impact. It is well known that the impact can 
cause both severe local damage on the 
composite/sandwich hulls [13], and simultaneously, 
global high-frequency vibrations that accelerate their 
fatigue failure. However, as pointed out by [14], 
when the duration of the bottom slamming-type 
impact is much smaller than the low-range global 
natural periods, the global and local effects of the 
impact can be investigated separately. In the present 
paper, we will focus only on the global slamming 
response of composite hull due to bottom slamming-
type impact and investigate the effectiveness of the 
tailoring on its alleviation. 
 
 
2 Coordinate Systems 
 
The load-carrying part of the hull is idealized as a 
composite moderately thick-walled beam (see Figs.1  
and 2) and the hull is assumed to symmetric with 
respect to z-axis.  
 
Two set of body-fixed right-hand Cartesian 
coordinate systems are adopted here with positive 
x direction to be along the mean forward speed 

U of the ship: 
� ),,( zyx : consisting of the three intersection lines 

of the three geometric symmetric planes. The 
origin xyzo is at the intersection of the after 

perpendicular and x -axis and located at the depth 

wH from the free water surface. This coordinate 

system is used in the structural modeling;  
� ),,( ςηξ : the plane 0=ς corresponds to the 

calm water level, and ς is positive upwards. The 

origin ξηςo is at the intersection of the after 

perpendicular and ς -axis. This coordinate system 
is used in the formulation of hydrodynamic 
loading. In the sequel, the cross section of the 

wetted hull surface is denoted by )(ξS  or )(xS , 

and the coordinates )(
�ηη = , )(

�ςς = , where 

�
is a parameter to identify the location of a point 

on )(ξS .  
 
3 Structural Modeling  
 
3.1 Kinematics of a Moderately Thick-Walled 

Composite Hull by the First-Order Theory 
 

The displacement field of the hull can be 
postulated as 
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where, the prime x∂∂≡′ /())( , and 

30uxzy ′−= γθ denotes the rotation of the cross 

section with respect to axis y , while 

xyz u γθ −′= 20 denotes the rotation of the cross 

section with respect to axisz; sy and sz  correspond 

to the coordinates of point (x,y,z) in the local 
coordinate system by prescribing  0=n (i.e., on the 

mid-contour), and 
ds

dy
y

ds

dz
zsa s

s
s

s −−≡)( ; 10u , 

20u and 30u  are measures of the overall 

displacements of the cross section in x , y and 

zaxes, respectively; φ  denotes the rotations of the 
cross section about x  axes, respectively.  The 
warping function of the cross section wF  is defined 

as: 

[ ]� ℵ−=
s
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in which, ℵ is the torsional function of the hull’s 
cross section and the quantity  
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Within the frame of first-order beam theory, one 
obtains: 
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s += , 
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nzz s

s −=    (4) 

3.2 Internal Forces in the Hull 
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Define the following membrane and transverse 
shear stress resultants 
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and the following stress couples 
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By virtue of the assumption related to the 

transverse normal stress 0=nnσ and to the hoop 

stress resultant 0=ssN [15], the 2-D stress 

resultants and stress couples can be reduced to the 
following expressions: 
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in which, ijK are the reduced stiffness coefficients; 
)0(

xxε and )0(
xxγ are the normal and shear strain 

components on the mid-surface of the beam walls, 
)1(

xxε is the first-order normal strain, whereas xnγ is 

the 2-D transverse shear strain. The expressions of 
these quantities are provided by  
 

φθθε ′′−′−′+′= wzsysxx Fyzu10
)0(    (9a) 

φθθγ ′ℵ+′+−′= )()()( 3020
)0( su

ds

dz
u

ds

dy
y

s
z

s
sx    

         (9b) 

φθθε ′′−′−′−= wz
s

y
s

sx a
ds

dz

ds

dy)1(                 (9c) 

)()( 3020 y
s

z
s

nx u
ds

dy
u

ds

dz θθγ +′−−′=  (9d) 

 

We further define the following 1-D (beam) internal 
forces: 
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in which and in the sequel, the closed-contour 
integration is carried out along the closed mid-line 
contour of the walls. 

The internal force-displacement relation can be 
represented as 
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         (11) 
It is noted that the stiffness matrix in Eq.11 is 

symmetric, i.e., jiij aa = , and the equation 

constitutes the most general representation of the 
force-displacement relations of moderately thick-
walled anisotropic beams. In general, for anisotropic 
and heterogeneous materials, the stiffness matrix is 
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fully populated, among which, the off-diagonal 
entries are associated with the structural couplings 
involving bending, twist, extension, transverse 
shearing and warping. Assessment of these 
couplings on the motion of composite naval hulls 
and their proper exploitation should constitute an 
important task toward a rational design of these 
structures and toward the proper use of the exotic 
material characteristics. 
 
However, in the present paper, we will focus on a 
special lay-up configuration, namely the 
circumferentially asymmetric stiffness (CAS) with 
respect to the horizontal axis y  (see e.g., [16]). 
Similar to the cases investigated by [17, 18], this 
type of beams feature the following two independent 
sets of elastic couplings: 
� Vertical bending/vertical transverse shear/ 

extension ( 30u , yθ , 10u ); 

� Horizontal bending/horizontal transverse 
shear/twist ( 20u , zθ ,φ ). 

In such a case, the internal force-displacement 
relations split into two groups: 
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When the transverse shears are disregarded (referred 
to as the non-transverse shearable (NTS) model 
herein and in the sequel), 20uz ′→θ , and 

30uy ′−→θ . Consequently, the counterparts of Eqs. 

12a and 12b become: 
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4 Governing Equations in the Case of CAS Lay-

Up 
 

The governing equations and the consistent 
boundary conditions can be systematically derived 
by using the extended Hamilton’s principle [19]: 
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where, ju ( 31−=j ) are defined by Eqs. 1a-1c, 

whereas xF , yF and zF are the hydrodynamic loads 

per unit span while xm is the hydrodynamic twist 

moment per unit span about axis x . It is noted that 
in the present paper, only unsteady part of the 
hydrodynamic loads are considered. 
 
The governing equations of the first group, which 
we will focus in the sequel, are 
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0)(: 101301412101110 =−+′+′′+′′+′′ ubFuaauau xyy

��θθδ
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         (15a-c) 
in which, 1b and 6b are the inertia coefficients. 

The associated free-free boundary conditions 
expressed in terms of the displacement quantities 
can be summarized as: 

 
At 0=x or L  

)()(: 301412101110 tTuaauau xyy =+′+′+′ θθδ
0)(: 304424101430 =+′+′+′ yy uaauau θθδ   

0)(: 3024221012 =+′+′+′ yyy uaaua θθδθ  (16a-c) 

 
In the NTS model, the corresponding governing 

equations reduce to 
 

0: 1013012101110 =−′′′−′′ ubuauau ��δ    (17a,b) 

0: 306301
)(

3022101430 =′′+−+−′′ ububFuauau z
IV ��δ  

 
and the associated free-free boundary conditions 
become: 
 
At 0=x or L  

)(: 3012101110 tTuauau x=′′−′δ
0: 3063022101230 =′−′′′−′′ ubuauau ��δ   

0: 3022101230 =′′−′′ uauauδ     (18a-c) 

 
In the normal operational conditions, due to the 

much higher ratio of force over hull stiffness in the 
longitudinal direction as compared to the vertical 
and lateral ones, the deformation of the hull in the 
longitudinal direction 10u can be completely 

disregarded. As a result, the governing equations 
reduce to 

 
0)(: 30130442430 =−+′+′′+′′ ubFuaau zyy ��θθδ (19a,b) 

0)(: 63044302422 =−+′−′′+′′ yyyy buauaa θθθδθ ��  

 
The associated free-free boundary conditions 

are: at 0=x or L  
 

0)(: 30442430 =+′+′ yy uaau θθδ     (20a) 

0)(: 302422 =+′+′ yyy uaa θθδθ    (20b) 

5 Unsteady Hydroelastic Loads Acting on the 
Hull 
 

We consider the case that the wetted surface of 
the hull is symmetric about the z-axis. Details of the 
derivation are omitted here. The final expression of 
the unsteady hydroelastic load zF can be summarized 
as: 
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         (21) 
in which, ρ is mass density of the water, g is the 

acceleration of the gravity, 22m is the added mass of 
the hull’s cross section when the oscillating 
frequency goes to infinity, Dϕ and Iϕ are the 
velocity potential associated with diffraction and 
incident waves, respectively; whereas 22h denotes 
the unsteady hydrodynamic impulsive function, 
which can be obtained either via experiments or 
numerical calculation.   
 
6 Solution Approach 
 

Due to the nonconservative nature of the 
problem and the complexities arising from the 
anisotropy of the constituent materials and the free-
free boundary conditions, spatial semi-discretization 
techniques is adopted and the governing equations 
are cast into state-space form. The spatial semi-
discretization is based on the modal analysis of the 
corresponding dry hull, while the conversion of the 
governing equations into state-space form is  
prompted by the fact that for a general 
nonconservative system, the solution requires a 
state-space description ([19], pp 206-210). 
Moreover, such a representation can be conveniently 
used in the case of the incorporation of an active 
control capability. In the sequel, we will present the 
description of the modal analysis, while the state-
space approximation will be presented elsewhere.  
 

Define the dimensionless longitudinal 
coordinate Lxx /ˆ ≡ . For the analysis of free 
vibration of the dry hull, one assumes the solution in 
the form: 

)exp()ˆ(),ˆ( 3030 tixutxu ω=    (22a) 

)exp()ˆ(),ˆ( tixtx yy ωθθ =    (22b) 
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in which, 1−≡i , while ω  denotes the vibration 
frequency.  

Substituting these expressions in Eqs. 22a, b, the 
following ordinary differential equations are 
obtained: 

0
1

)1( 30
2222 =′−−−′′ u

Lybsrys θρρρθρ  (23a)  

030
22

30 =′++′′ ybs Luu θρρ    (23b) 

 

in which, x̂/)()( ∂•∂≡′• , and the dimensionless 

parameters rρ , sρ and bρ are defined as: 
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Following the approach by [20], after 

eliminating )ˆ(30 xu  in Eq. 23a or )ˆ(xyθ  in Eq. 23b, 

the governing equations for )ˆ(30 xu  and )ˆ(xyθ  are 

obtained as: 

0)1()( 30
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         (25a,b) 

It is noted that )ˆ(30 xu  and )ˆ(xyθ  fulfill the 

same governing equation. As a result, we only focus 
on the solution associated with )ˆ(30 xu . Assume in 

Eq.24a the solution form )ˆexp()ˆ( 3030 xuxu λ= , 

wherefrom one obtains  

2

4)()( 24222222
2 bbrsrsb ρρρρρρρ

λ
+−±+−

=  

         (26) 
Within the practical low frequency range 

encountered by the global hydroelastic analysis, we 
have 

 24222222 4)()( bbrsrsb ρρρρρρρ +−≤+ (27) 

As a result, two roots of λ in Eq. 26 should be 
nonnegative. Consequently, the four roots of λ can 
be written as 
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As a result, the solution form of )ˆ(30 xu can be 

represented as 

)ˆsin(
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++=

         (29) 
where, the parameters ic ( 41−=i ) need to be 

determined by the fulfillment of the boundary 
conditions. Substituting Eq. 29 into Eqs.23b, the 

solution of )ˆ(xyθ  can be represented as: 

)ˆsin(

)ˆsin()ˆcosh()ˆsinh()ˆ(

34

331211
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in which, the coefficients id ( 41−=i ) are defined 

as 
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         (31a-d)
 Fulfillment of the boundary conditions Eqs. 
20a, b and the condition of nontriviality of the 
parameters ic  lead to the following transcendental 

characteristic equation: 
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          (32) 
The nth eigenmode corresponding to 30u and 

yθ can be represented as  
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By the expansion theorem [19], the general 

hydroelastic response in Eqs. 19a,b can be 
represented as  
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∞

=1
3030 )()ˆ,(),ˆ(ˆ

n
n tqxnUtxu

   (34a) 

� Θ=
∞

=1
)()ˆ,(),ˆ(ˆ

n
nyy tqxntxθ     (34b) 

In the practical implementation, the infinite series 
in the expressions Eqs. 34a,b will be truncated to a 
finite number.  

 
7 Results and Discussion 

 
Strictly speaking, bottom slamming impact is a 

nonlinear phenomenon, the amplitude and its time 
variation of the pressure are sensitive to the details of 
the impact, such as relative velocity between the hull 
and the ambient wave, wave slope, impact angle, 
local hull deadrise angle, etc.(see e.g., [21-24]). 
However, it is beyond our scope to deal with such 
details of the slamming impact. Instead, we restrict 
ourselves to the time-history of the slamming impact 
pressure in the case when its peak value and spatial 
distribution are given. More specifically, the 
following widely accepted empirical model (see e.g., 
[25, 26]) will be adopted: 

��
�

�
��
�

�
−��

�

�
��
�

�
=

00
max 1exp)ˆ(),ˆ(

T

t

T

t
xFtxF sl  

where, 0T denotes the pressure rise time, while 

)ˆ(max xF denotes the maximum slamming impact 

pressure per unit of x̂ .  
In the following numerical calculation, it is 

assumed that the slamming impact uniformly acts on 
the 4th quarter of the hull, i.e., 75.0ˆ ≥x . The 
material and geometrical properties of the hull are 
supplied in Table 1. In the following calculation, the 
ply angle on the webs is taken to be 0=θ . 

When a hull is subject to a slamming impact, 
high-frequency vibrations will be induced, which are 
referred to as whipping. It is well known that they 
can not be quenched easily either by the 
hydrodynamic damping (see e.g., [1]) or by the 
structural damping (see e.g., [26]). This is clearly 
demonstrated by Fig.3, in which the pressure rise 
time of the slamming impact is taken to be a typical 
one 033.00 =T sec. (see e.g., [27]). Furthermore, it 

is assumed here that mL 100= , 

mNxF /10)ˆ( 6
max = , the added mass coefficient 

22m  and the added damping coefficient 22N  are 
calculated on a wetted surface of the hull oscillating 
on the free surface.  

During the past years, both passive and active 
mechanisms have been attempted for whipping 
reduction, see e.g., [26]. It is remarked that in these 
two approaches, additional devices on the hull 
structure have to be incorporated and additional 
energy input has to be made in the active one. In the 
present paper, without weight penalty (in the context 
of composite hulls) we investigate the efficiency of 
elastic tailoring on the alleviation of the whipping 
response. As discussed at the beginning, one basic 
variable enabling one to achieve elastic tailoring 
stems from the directionality property of composite 
materials.  

Figures 4 and 5 compare the whipping responses 
of two cases: ]30[ 6  and ]90[ 6 . It is remarkable to 

notice that significant reduction of the whipping 
intensity can be achieved by applying the tailoring 
technique. It is noted that the only difference within 
these two cases are on the ply angle. Using the results 
from Fig.6, it is concluded that such reduction is 
achieved by the dramatic increase of the stiffness 
coefficient 22a . 

Another design variable for elastic tailoring is 
the lay-up. The corresponding design space is huge 
and many practical constraints have to be considered 
and optimization has to be used. Here, we compare 
only two cases: s]45/45/90[ −  and ]45[ 6 . The 

results are shown in Figs.7 and 8. Again, notice the 
significant reduction of the whipping intensity by the 
lay-up s]45/45/90[ − . 

 
8 Conclusions 

 
In the context of slender marine vehicles made 

of advanced composite materials, a refined first-order 
transverse shearable anisotropic, moderately thick-
walled beam theory is adopted to model the global 
dynamic behavior of the hulls. Exotic elastic 
couplings, transverse shear and warping are 
systematically incorporated. In the case of 
circumferentially asymmetric stiffness (CAS) lay-up 
with respect to the horizontal axis y , by integrating 
the unsteady hydrodynamic load, the comprehensive 
hydroelastic governing systems are derived. Exact 
modal solutions of some special cases are obtained. 
These analytical results can be used to calibrate the 
accuracy of numerical approaches and to facilitate the 
understanding of the role played by the material 
anisotropy and lay-ups on the change of dynamic 
behaviors of dry hulls. 
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It is further demonstrated by two simple cases, 
that the elastic tailoring can be effectively used to 
reduce the whipping intensity. 
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Table 1. Material properties and geometric specifications 
of the idealized composite hull used in the investigation 
of slamming impact. 
 
 

Material Value 

11E  211 /1042.1 mN×  

3322 EE =  29 /1079.9 mN×  

2313 GG =  29 /100.6 mN×  

12G  29 /1083.4 mN×  

( 12µ , 13µ , 23µ ) ( 24.0 , 24.0 , 5.0 ) 

sρ  33 /1060.1 mKg×  

Geometric Value 
Widtha m10  
Deptha m7  

Wall thickness ( h ) m5.0  
Number of layers 6 

a The length is measured on the mid-line contour 
 
 
 
 

 
 
Fig.1. An advanced composite marine craft in wavy 

sea. 
 

 
 
 
Fig.2. An idealized profile of the composite marine 
craft in Fig.1. The CAS lay-up configuration with 
respect to the axis y is used, i.e., the ply angle µ on 
the flanges (top and bottom walls) and the webs 
(right and left walls) fulfill )()( yy θθ −=− .   
 
 
 
 
 
 
 
 
 

 
 
 
Fig.3. Hydroelastic response 30u ( tLx ,5.0/ = ) 

amidship subject to a single slam impact. 
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Fig.4. Influence of elastic tailoring on the 
hydroelastic response 30u ( tLx ,5.0/ = ) amidship 

subject to a slam impact. 
 
 
 

 
 
 
Fig.5. Influence of elastic tailoring on the  
hydroelastic response yθ  ( tLx ,5.0/ = ) amidship 

subject to a slam impact.  
 
 

 
 
Fig.6. Cross-sectional stiffness versus the ply angle. 

 

 
 
 
 
Fig.7. Influence of elastic tailoring on the 
hydroelastic response 30u ( tLx ,5.0/ = ) amidship 

subject to a slam impact. 
 
 

 
 
Fig.8. Influence of elastic tailoring on the 
hydroelastic response yθ  ( tLx ,5.0/ = ) amidship 

subject to a slam impact. 
 


