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Abstract  

During the processing of thermoset-based 
composite structures, the thermal strain mismatch 
between the part and the tool induces a steep stress 
gradient through the thickness of the part. Capturing 
this stress gradient which occurs at the initial stages 
of the curing process is the key for successful 
prediction of process-induced deformations using 
the finite element method. The number of elements 
necessary for accurate through-thickness resolution 
varies from problem to problem. Successive mesh 
refinement to achieve convergence is a tedious and 
costly proposition. To address this issue, two higher-
order finite elements based on h- and p-adaptive 
techniques are developed in this study to enable 
accurate solutions to various processing problems 
using a single element discretization through the 
thickness. Examples are presented to demonstrate 
the efficacy of these elements. 
 
 
1 Introduction  

As the resin cures during the processing of 
thermoset-based composite structures, its effective 
elastic (and shear) modulus increases by as much as 
6 orders of magnitude from roughly 1 kPa to 1 GPa. 
In the heat-up phase the tool expands and stretches 
the part with it thus inducing a steep gradient of 
stress through the thickness due to the low shear 
modulus of the part. This stress gradient locks in as 
the material cures which upon removal of the tool, 
causes the part to warp. It is crucial to capture the 
stress gradient that occurs at the initial stages of cure 
in order to predict the residual deformation of the 
composite part accurately [1].  Using mechanistic 
closed-form solutions [2], the authors have shown 

that the through-thickness stress gradient depends on 
both material and geometrical properties of the part. 

Solid elements are commonly employed to 
model process induced deformations since classical 
shell elements are not able to capture such highly 
nonlinear through-thickness stress gradients 
accurately. However, the main drawback of using 
solid elements is that a rather large number of such 
elements are often necessary for spatial 
discretization in order to satisfy accuracy 
requirements while avoiding the locking effect that 
occurs in solid elements with large aspect ratios. In 
recent years, many shell-like solid element 
formulations have been reported in the literature, 
with the intent of eliminating the locking effects.  
Recently, Dhondt [3] showed that 20-noded solid 
elements with reduced integration are effective in 
modelling thin-walled (shell-like) structures. Even 
though this will allow us to use a large aspect ratio, 
one still needs more than one element (up to 8 
elements) in the thickness direction to capture the 
large stress gradients that occur during the initial 
stages of cure. Since the stress gradient depends on 
the material and geometrical properties [2], the 
number of elements in the thickness direction varies 
from problem to problem. Finding the number of 
elements necessary in the thickness direction for a 
particular problem by trial-and-error is ineffective 
and costly.  

Adaptive mesh refinement has been the subject 
of extensive investigation with the objective of 
obtaining solutions with pre-specified accuracy with 
minimum cost of model preparation and 
computation [4,5]. The two main categories of 
refinements are the h-refinement and the p-
refinement. In adaptive h-refinement, a mesh with a 
fixed type of low order elements is successively 
refined by reducing the size of the elements. By 
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contrast, in adaptive p-refinement the elements of 
the mesh remain fixed in both size and position 
while the polynomial order, p, of the shape functions 
is enriched by adding higher order terms to the 
existing lower order shape functions. 

In this study, the above two adaptive methods 
are used to render the process modelling more 
efficient by (i) eliminating the need for explicit 
meshing through the thickness, and (ii) selecting the 
number of degrees of freedom (d.o.f) automatically 
during the computational run on an as-needed basis. 
2 Element Formulation 

In this section two types of higher order 
elements are described based on using the h- and p-
refinement techniques through the thickness 
direction only. The basic element has 24-nodes in 
total (8 on each of the bottom, top and mid planes) 
as shown in Fig. 1.  
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Fig. 1. 24-node hierarchical solid element 
 

The bottom and top surface nodes have the 3 
conventional displacement d.o.f’s (u, v and w). The 
number of d.o.f’s at the mid-plane nodes varies 
depending on the number of terms used in the p-
refinement or the number of element-layers used 
implicitly in the h-refinement techniques. In the p-
refinement, the d.o.f’s at the mid-plane nodes are 
merely unknowns that do not have any physical 
meaning. However, in the h-refinement, the d.o.f’s 
at the mid-plane nodes correspond to the 
displacements in the various element layers through 
the thickness. 

The developed element is a composite element 
with multiple numbers of layers. The layers may be 
of the same material with different fibre orientations 
or different materials (e.g. hybrid or sandwich 
panels) and are assumed to be stacked in the 
thickness direction. The layer thicknesses can vary 
arbitrarily within the element. The layer thickness at 
an integration point can be found by linear 
interpolation of layer thicknesses defined at the four 
corner nodes [6]. Both the h- and p-elements have 

been developed and implemented in ABAQUS [7] 
as user defined elements. The evolving properties of 
the composite material during the curing process are 
modelled using the COMPRO Component 
Architecture (CCA) approach [8]. 
2.1 Numerical Integration 

The element stiffness matrix in the local 
element coordinate is given by: 

ζηξ dddT∫ ∫ ∫
− − −

=
1

1

1

1

1

1

JBDBK  (1) 

where J  is the determinant of the Jacobian matrix, 
B and D are the strain-displacement (small strains) 
and material stiffness matrices, and ξ,η,ζ are the 
element natural co-ordinates. 

The above integral is evaluated numerically 
using the combination of Gaussian quadrature and 
Simpson’s rule (Fig. 2). 
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Fig. 2. Schematic showing the in-plane and through 

thickness integration points in the 24-noded 
composite solid element 

 
A 4-point reduced Gauss integration is used in-

plane to avoid the locking effects. The reduced 
integration is necessary only in the in-plane direction 
[9] while full integration is used in the through-
thickness direction to capture the details of the stress 
distribution. 

The material stiffness matrix D  varies from 
layer to layer and thus is not a continuous function 
of ζ . Therefore the integration is carried out 
layerwise in order to obtain the stiffness coefficients 
for the entire element. For the layerwise through-
thickness integration both the Gauss and Simpson’s 
rules are used. 

In order to apply the usual weight factors in the 
Gaussian and Simpson’s formula, the co-ordinate 
limits for the layer thickness have to be -1 and +1. 
This can be achieved by suitably modifying the 
variable ζ  to kζ  in layer k  such that kζ  varies 
from -1 to +1 in that layer: 
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where t  is the total thickness and kt  is the thk  layer 
thickness. Now the integral in Eq. (1) becomes: 
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Generally, in a composite element, at least one 
Gauss point per layer is required to capture the effect 
of different layer properties. If Simpson’s integration 
scheme is adopted, at least three integration points 
per layer are needed in the thickness direction. In a 
typical composite laminate involving multiple layers 
the number of integration points per layer should be 
sufficient to integrate the higher order terms 
accurately. The efficiency of the run time is very 
sensitive to the number of integration points used to 
calculate the load vectors and stiffness matrices. 
Even though our goal is to achieve overall efficiency 
in process modelling, the main focus here is on 
automating the process of selecting the number of 
elements in the thickness direction, so that the pre-
processing time can be reduced or the costly 
successive mesh refinment technique for obtaining a 
converged solution can be eliminated. 
2.2 Displacement Interpolation Functions 

The in-plane interpolation (shape) functions are 
similar to the shape functions of a 2-dimensional 
conventional serendipity 8-noded solid element.  
The eight in-plane shape functions ( nQ ) are given 
by: 
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(4) 

The shape function corresponding to each 
surface nodes are obtained by multiplying the in-
plane shape functions with the corresponding 
through-thickness shape functions. If the through 

thickness shape function corresponding to the 
bottom, top and mid surface are given by bR , tR and 

mR  respectively, then the nodal shape functions can 
be written as: 
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The displacement interpolation is given by: 
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The number and form of the shape functions 
iN  depend on the type of elements used (h- or p-

refinement). The details of the shape functions will 
be presented below. 

2.2.1 Hierarchical Element 
In the hierarchical element formulation, the 

order of the through-thickness displacement 
interpolation is increased by adding extra d.o.f’s to 
the mid-surface nodes. The basic element has a 
quadratic interpolation function with 3 d.o.f’s at 
each of the mid-plane nodes. The displacement 
fields are discretized as follows: 
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Only the order of interpolation for u  and v  
are increased and the through-thickness interpolation 
function for w  remains quadratic. The order of the 
interpolation function can be increased by one order 
through the introduction of two more d.o.f’s at the 
mid-surface nodes (total of 16 d.o.f’s).  
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The shape function for a 3rd order hierarchical 
element is shown in Fig. 3. 
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Fig. 3. Through-thickness displacement interpolation 

functions for a 3rd order hierarchical element 
 

Many different types of shape functions can be 
used for the hierarchical shape functions [4-5]. The 
only requirement is that they have zero values at the 
top and bottom nodes. Due to their orthogonal 
properties, the most commonly used shape functions 
for hierarchical elements are the Legendre 
polynomials [4-5]. In this study, Legendre 
polynomials are used thus resulting in the following 
through-thickness shape functions: 
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where iφ is given by: 
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where kP  are the Legendre polynomials and p is the 
polynomial order by which the element is identified. 

2.4.2 Layer-wise Element 
In the layer-wise element method, each layer is a 
quadratic 24-noded element. The through-thickness 
shape function for such an element is quadratic and 
for a one-layer element can be written as: 
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An additional element-layer can be added to 
the element by introducing two more nodes in the 
thickness direction as shown in Fig. 4(b). To add 
physical nodes, a new mesh needs to be generated. 
However, to avoid mesh regeneration an element-
layer can be added through the introduction of 
additional d.o.f’s at the mid-nodes. 
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 (a) (b) 
Fig. 4. Through-thickness displacement interpolation 
functions for layer-wise elements: (a) one-layer and 

(b) two-layer elements 
 
The main restriction of the current layer-wise 

approach is that the number of element layers cannot 
be dynamically added or dropped during the 
computational analysis. The number of element 
layers necessary for a problem is selected a prior and 
then kept constant throughout the analysis. 
However, the process of selecting the necessary 
number of element layers can be automated based on 
the material and geometrical parameters of the 
domain being discretized.  
3 Verification Examples 

3.1 Varying Layer Thickness 

A benchmark example is used here to test the 
capability of the developed element to model 
varying layer thicknesses in a composite element. A 
cantilever tapered sandwich beam, as shown in Fig. 
5, is analysed for this purpose. 
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Fig. 5. Schematic of a tapered sandwich beam with a 
varying thickness core under a uniformly distributed 

load 
 

The sandwich beam is assumed to consist of a 
tapered aluminum core with unidirectional CFRP 
composite skins. In practice, a softer material than 
aluminum is commonly employed for the core. 
However, this would require more than one element 
discretization in the thickness direction in order to 
capture the highly non-linear through-thickness 
distribution of the in-plane displacements resulting 
from the transverse shear compliance of the beam. 
With the aluminum core, one element through the 
thickness is sufficient to model the beam. The 
properties of the skin and core materials are listed in 
Table 1. 
 
Table 1. Properties of the CFRP skin and aluminum 

core 
Properties CFRP 

Skin 
Aluminum  
Core 

E11 (GPa) 126 69.0 
E22 = E33 (GPa) 10.2 69.0 
ν12 = ν12  0.265 0.327 
ν23  0.467 0.327 
G12 = G13 (GPa) 5.44 26.0 
G23 (GPa) 3.46 26.0 
CTE1 (µ/°C) 0.0374 23.6 
CTE2 = CTE3 (µ/°C) 29.5 23.6 

 
The beam is subjected to a uniformly 

distributed load on the top surface. Both the 
ABAQUS built-in 20-noded element and the current 
24-noded element are used to model the beam. For 
the 20-noded element, each of the skins and the core 
are modelled with single elements in the thickness 
direction, since the ABAQUS composite elements 
do not accommodate varying layer thicknesses. In 
the 24-noded element case, the whole thickness of 
the beam is modelled with just one element. A 
comparison of the predicted deflection profiles using 
these elements are shown in Fig. 6. It can be seen 
that the two predictions agree quite well thereby 
instilling confidence in the implementation of the 
varying layer feature of the developed user defined 
element in ABAQUS. 
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Fig. 6. Comparison of the predicted deflection 
profiles of a tapered sandwich beam using the 
ABAQUS built-in 20-noded element and the 

developed 24-noded user element 
 

3.2 Performance of h- and p-Elements 

In this section we compare the convergence 
rates and efficiencies of the developed h- and p-
elements. For this purpose both elements are used to 
study the warpage of a flat unidirectional composite 
part virtually processed on an aluminum tool (Fig. 
7). 
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Fig. 7. Schematic of the geometry and 
boundary conditions used to model the warpage of a 
flat composite part processed on an aluminum tool 
(half the length is modelled due to symmetry) 

 
The part is considered to be made of 8 

unidirectional layers of T800H/3900-2 CFRP 
material and subjected to the cure cycle shown in 
Fig. 8. The material properties are listed in Table 1. 
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Fig. 8. Typical one-hold temperature cure cycle 

 
This problem was first analysed with the 

standard 20-noded built-in element in ABAQUS 
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resulting in a predicted maximum warpage of 35.29 
mm using 16 elements in the thickness direction. 
This is considered to be the converged solution used 
as benchmark for studying the convergence rates of 
the h- and p-elements. 

The predicted warpage as a function of the 
number of d.o.f’s in both the h- and p-element 
methods is shown in Fig. 9. Note that in all these 
analyses the part and the tool are assumed to be fully 
bonded. 
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Fig. 9. Comparison of the convergence rates of the 

h- and p-element methods  
 

As shown in the figure, the p-element 
converges faster than the h-element.     

The variation of run time with the number of 
d.o.f’s in both methods is shown in Fig. 10. 

 

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000

h-element
p-element

Number of degrees of freedom

R
un

 ti
m

e 
(m

in
)

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000

h-element
p-element

Number of degrees of freedom

R
un

 ti
m

e 
(m

in
)

 
Fig. 10. Comparison of the computational run times 

of the h- and p-element methods 
 

In the p-element method, the run time is seen 
to increase exponentially with the number of d.o.f’s. 
Though the implementation of the p-element method 
is more somewhat simpler, it is not as efficient as the 
h-element method in terms of run time. Selection of 
the number of terms or the number of element layers 
and suggested techniques to reduce the run time of 
the p-element method will be discussed next. 

 
 
 

4 Selection of Number of Terms or Number of 
Element Layers 

In the closed-form solution developed by the 
authors [2], it is shown that the through-thickness 
distribution of the axial displacement, u, is an 
exponential function which depends on the material 
and geometrical properties of the composite part: 
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where y  is a non-dimensional thickness coordinate 
that varies from 0 to 1.0. Taylor series expansion of 
u results in: 
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The additional number of terms, n (or number 
of element layers, n/2) required for a particular 
problem is based on the relative contributions of the 
higher order terms. The basic 24-noded element has 
a 2nd order shape function or one element in the 
thickness direction. The ratio of the last two terms in 
the series, (

n
n

C
C 1+ ), are compared with a pre-

specified threshold limit. For a given value of n if 
the above ratio falls below the threshold limit, then 
the contribution of additional terms to the accuracy 
of the predictions is deemed to be insignificant and 
the series is truncated beyond the nth term. For the 
composite part considered in this study, the various 
ratios (

n
n

C
C 1+ ) computed during the initial stages of 

curing (representing a severe case when the 
displacement gradient through the thickness is 
highly non-linear), are shown in Fig. 11. 

In this study, threshold values of 1.0 and 1.5 
are selected for the h- and p-element methods, 
respectively 
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Fig. 11. The ratios of the last two coefficients of the 

Taylor series expansion of the through-thickness 
axial displacements used to determine the required 

number of d.o.f’s in h- and p-element methods 
 

4.1 Reducing the Run Time in the p-Element 
Method 

The run time of the p-element method may be 
reduced by: (1) employing an efficient spatial 
integration technique, and/or (2) dynamically 
changing the number of terms in the series [10-11]. 
The second option will be pursued here.  

As noted in the previous section, higher order 
terms may be necessary only at the initial stages of 
the curing process when the gradient of the through-
thickness stress distribution is appreciable. For the 
above example, the number of higher order terms 
necessary during the cure cycle to achieve 
convergence based on a threshold value of 1.5 is 
shown in Fig. 12. 
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Fig. 12. Number of higher order terms required 

during the cure cycle to achieve convergence with p-
elements 

 
As shown in the figure, higher order terms are 

only necessary during the initial stages of the cure 
cycle. 
4.2 Implementation in ABAQUS 

To enable adaptive change in the number of 
terms, the d.o.f’s at the mid-surface nodes need to be 
altered dynamically. At present, the finite element 

code ABAQUS does not allow such manipulation of 
the d.o.f’s during the computational run. For user 
elements, the number of nodes and d.o.f’s at each 
node need to be predefined and remain fixed. A 
work-around to achieve reasonable run time 
efficiencies with the existing capabilities of 
ABAQUS is to run the analysis in two steps (see 
Fig. 13), where in the first step the maximum 
number of higher order terms are used followed by a 
second step where only the basic 24-noded element 
without any additional hierarchical terms is 
employed. 
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Fig. 13. Cure cycle divided into two regimes to 

achieve a more efficient p-element solution 
 

In order to implement the above, the d.o.f’s are 
activated by dynamically changing the boundary 
conditions during the run. In this case, the mid 
surface nodes of the element are assigned the highest 
number of terms necessary for that particular 
problem. The latter is a user defined input and is 
read inside the element. The element calculates only 
the required components of the load vector and 
stiffness matrix for the active d.o.f’s at that time 
step. The remaining components of the load vector 
and the stiffness matrix are set to zero. In the input 
file, the unnecessary d.o.f’s are set to zero using 
prescribed boundary conditions. 

Fig. 14 shows a comparison of the run times 
using the h-element and the p-element both with and 
without adaptivity. As shown in the figure, the run 
time is substantially reduced (by about 50%) by 
changing the number of terms in two steps. If the 
number of steps are increased then the run time can 
be further decreased. Regardless, the run time of the 
p-element method will still be greater than the h-
element method. To reduce the run time further, 
more efficient spatial integration schemes need to be 
investigated [10-11]. 
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Fig. 14. Comparison of run times between h- and p-

elements 
 

Based on above the example problem, it is 
apparent that the h-element method has many 
advantages over the p-element method such as run 
time efficiency and the ability to model non-smooth 
displacement variations through the thickness. 
Hence, in the following section, the h-element 
element method will be used in concert with the 
contact surface option in ABAQUS to predict the 
results of the warpage experiments conducted by 
Twigg [12].  
5 Warpage Predictions 

In this section, the experimentally measured 
warpage of flat unidirectional composite parts of 
three different lengths (300 mm, 600 mm and 1200 
mm) and three different thicknesses (4, 8 and 16 
plies) are compared with predictions using the h-
element method. The tool-part interface condition is 
simulated using the built-in sliding contact surface in 
ABAQUS [6]. 

It was shown in the experiments [13, 14] that a 
sliding interface condition exists at the early stages 
of the cure when the resin has a very low modulus. 
During the temperature hold the part sticks to the 
tool and during the subsequent cool down it debonds 
from the tool and slides over it again. Our focus is 
the sliding interface condition during the heat-up 
portion of the cure cycle since stresses that develop 
at the later stages of the cure cycle do not contribute 
to the unbalanced moment development that lead to 
part warpage. The basic Coulomb friction model 
available in ABAQUS with a maximum shear stress 
limit is used to model the sliding interface condition 
(Fig. 15) 
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Fig. 15. ABAQUS basic Coulomb friction model 

with a maximum shear stress limit 
 

Fig. 16 shows a comparison between the 
predicted and measured warpages. A reasonable 
agreement is obtained for most cases. 
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Fig. 16. Comparison of warpage predictions with 

experimental results 
 

6 Summary and Conclusions 
During the processing of thermoset-based 

composite structures, the thermal strain mismatch 
between the part and the tool induces a stress 
gradient through the thickness of the part. In order to 
predict the residual deformation of the composite 
part accurately, it is crucial to capture the rather 
steep and highly non-linear stress gradient that 
occurs at the initial stages of cure. The magnitude 
and shape of this stress distribution depends on the 
material and geometrical properties of the part. 
Using standard solid elements for process modeling 
requires a certain element resolution through the 
thickness in order to achieve accurate solutions. The 
actual number of elements needed for through-
thickness discretization varies from problem to 
problem. Determining the number of elements by 
trial-and-error is a tedious and time consuming 
task as it involves successive mesh refinements.  

In this study, two adaptive finite element 
techniques were developed such that only one 
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element can be used in the thickness direction to 
study different problems thus greatly reducing the 
set-up time. The two developed finite elements were 
based on the adaptive p- and h-element method 
available in the literature. Both methods use a 24-
noded subparametric element as the base. By adding 
the required additional d.o.f’s to the mid-surface 
nodes, the number of terms in the p-method and the 
number of elements in the h-method can be 
increased without changing the original mesh. A 
methodology was developed to select the number of 
elements or the number of terms automatically based 
on the material and geometrical properties. 

It was shown that the developed h-element is 
more efficient in terms of run time compared to the 
p-element. The developed h-element was used 
together with the contact surface option in ABAQUS 
to predict the experimentally observed warpage of 
flat composite parts.  
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