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Abstract  

This paper presents a new three-dimensional 

damage propagation model for laminated 

composites. The initiation of failure is predicted 

using a state-of-the-art physically-based set of 

criteria, LaRC04. The novelty in this work lies in the 

modelling of failure propagation. So that the 

propagation of cracks with any orientation in a 3D 

space (as predicted by LaRC04) can be more 

accurately modelled, the strains are divided into 

their crack and elastic components. Mesh 

dependency is addressed using a smeared crack 

formulation with a characteristic length parameter. 

The model is implemented in the commercial 

software ABAQUS Explicit, so it can be readily used 

by designers and engineers. Validation and 

application examples will be presented at the 

conference. 

 

 

1 Introduction 

In many circumstances – crashworthiness is an 

extreme example – structures must continue to 

perform in the presence of damage. Under these 

situations, practitioners need reliable models which, 

besides predicting the initiation of failure, go beyond 

and predict its propagation. To solve complex 

problems, these models are typically numerical, 

often based on the finite element (FE) method. Some 

recent approaches to model propagation take into 

account that the response of the structure depends on 

the energy that each failure mode dissipates, and 

incorporate the fracture toughness associated with 

each failure mode in the numerical propagation 

model. When used together with failure criteria that 

predict the orientation of the macroscopic fractures 

in the composite, energy-based damage models 

account for the degradation of the traction 

components acting on the fracture plane [1]. The 

proposed framework provides a more accurate 

simulation of damage propagation, while ensuring 

that the solution is mesh-independent. 

 

2 Objectives and approach 

This study focuses on the initiation and 

propagation of damage in laminated composite 

materials reinforced with unidirectional plies. The 

study aims at predicting failure initiation and 

propagation in these composites more accurately 

than it is achieved currently. The approach relies on 

attempting developments concurrently in three 

interrelated areas, see Fig. 1: experimental, 

analytical and numerical. 

Initiation is predicted using a previously 

published set of criteria, LaRC04 [2]. These criteria 

define the orientation of the fracture plane (e.g. 

matrix cracking) or failure band plane (e.g. fibre 

compressive kinking) for the failure mode predicted. 

Failure propagation is predicted with a 

Smeared Crack Model (SCM) recently coded into 
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Fig. 1: Diagrammatic representation of the approach 
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FE, and is the main focus of this contribution. This 

SCM is a complete departure from earlier work [1], 

as it more correctly represents the presence of a 

macroscopic crack in the material by explicitly 

decomposing the total strain in its components 

related and not related to the macroscopic cracks 

being modelled [3]. 

 

3 Smeared crack model 

In this SCM, the strain εεεε is explicitly divided 

into its elastic (i.e. not related to the macroscopic 

fracture process) component εεεεe and the strain related 

to the fracture process εεεεc. Each fracture plane has an 

associated crack strain εci and the total crack strain is 

therefore εεεεc=∑εεεεci. The elastic strain εεεεe includes the 

linear components of strain as well as the strain 

resulting from material non-linearity but it does not 

include the strains related to the failure/fracture 

process. The analysis of a single failure feature will 

be summarised first. 

The strain in the material coordinate system 

can be expressed as 

 

ce εεε += .
 

(1) 

 

The stress σσσσ relates to the elastic strain εεεεe by 

 

( )ceee εεDεDσ −== .
 

(2) 

When expressed in a coordinate system aligned 

with the crack, Fig. 2, the only non-zero crack 

strains are ( )Tc

nl

c

mn

c

nc γγε ,,=e . The crack strains in 

the local crack coordinate system are related to the 

crack strains in the material coordinate system  

 

by  

Fig. 2: Local coordinate system aligned with the crack 

ccc eTε =  
(3) 

 

where Tc is the 6x3 transformation matrix 
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(4) 

 

The constitutive law in Eq. (2) can then be written as 

 

( )cce eTεDσ −= .
 

(5) 

 

The traction acting on the fracture plane =s  

( )T

nlmnn ττσ ,,  can be obtained from σσσσ and Tc as 

 

σTs
T

c= .
 

(6) 

 

A propagation law relates s to ec such that the 

fracture energy is correctly modelled. A general law 

is of the form  

 

cco eDss
*ˆ+=  (7) 

 

or, in a rate form 

 

cceDs && ˆ=  (8) 

 

In Eqs. (7) and (8) , if 
*ˆ
cD  does not depend on ce , 

then cc DD ˆˆ * = . For the total formulation, an 

expression for the crack strain ce  can be obtained by 

equating Eqs. (6) and (7) , resulting in [3] 

 

( ) ( )oe

T

ccce

T

cc sεDTDTDTe −+=
−1

*ˆ  (9) 
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or 

 

( ) ( )oe

T

ccec sεDTDDe −+=
−1

*ˆˆ  (10) 

 

with 

 

TDTD e

T

ce =ˆ  (11) 

 

For the incremental formulation, the corresponding 

expression for ce&  is 

 

( ) ( )εDTDDe e

T

ccec

1
*ˆˆ

−

+=&  (12) 

 

Both (10) and (12) allow the determination of the 

crack strain ce  for a given strain state provided 

*ˆ
cD or cD̂ do not depend on ce . For a general 

formulation of the constitutive law expressed in Eqs. 

(7) and (8) in the spirit of damage mechanics, it will 

be seen in the following that 
*ˆ
cD and cD̂ do depend 

on ce . Specific models with 
*ˆ
cD and cD̂  

independent of ce  during damage propagation are 

possible, but not all reproduce automatically the 

physics of the decohesion process, ie. complete 

decohesion attained simultaneously for all traction 

components. For a general situation, all three 

components of ce  can be non-zero. 

The decomposition of the total strain in elastic and 

crack components is represented in Fig. 3(a) for a 

one-dimensional case. The figure shows a tensile 

strain, applied at constant rate. In the elastic regime, 

the crack strain is zero and the total and elastic 

strains therefore coincide. During the propagation of 

failure, the crack strain increases while the elastic 

strain decreases. As the crack strain increases, the 

traction on the fracture surface decreases and 

eventually becomes zero at total failure. Since the 

only non-zero crack strains are the components of 

ce , then s  and ce  are work-conjugate.  

A simple linear cohesive law is presented in Fig. 

3(b), and can be expressed as 

 

cf

o
o

c ε
ε

σ
σσ −=  (13) 

 

with 

 

o

c

f

E

σ
ε 2=  (14) 

 

For a 3D situation, this law could be expressed as 
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(15) 

 

being 

 

lnmnni
E o

i

o

cf

i ,,with 2
2

== σε
s

 
(16) 

 

 
Fig. 3: (a) Elastic and crack components of the 

strain;  (b) cohesive law and fracture 

toughness 

 

In Fig. 3(b), the area under the curve is Ec, and it is 

an energy per unit volume. To simulate the fracture 

process accurately, this energy is calculated from the 

t

ε

ce εεε +=

eε

cε

s

o

c
f

s

E2
=ε

c
c E

L

G
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ratio between the critical energy release rate for the 

failure mode being simulated and a characteristic 

length. This characteristic length is the ratio between 

the volume associated with the integration point and 

the area of fractured surface in the same volume. 

The critical energy release rate for each failure mode 

is measured experimentally [4]. 

 

Eqs. (15) and (16) define 
*ˆ
cD . Since 

*ˆ
cD  does not 

depend on ce , then cc DD ˆˆ * =  for this model. 

However, a problem with this constitutive cohesive 

model is that, for a non-proportional deformation, 

complete decohesion is not attained at the same time 

for all components of the traction vector. Anyway, 

Eqs. (10) and (12) can be used to determine the 

crack strain (increment), and Eq. (5) or its 

incremental form can be used to determine the stress 

(increment). 

An alternative damage model to the one in Eq. (15) 

that guarantees full decohesion simultaneously for 

all crack strain components takes the simple form 

 

( )
















−=
















o

n

o

mn

o

n

n

mn

n

ll τ

τ

σ

ω

τ

τ

σ

1  
(17) 

 

Neglecting irreversibility for the moment, the 

damage variable ω  would be a function of ce , 

eventually through an equivalent strain ε~ . The 

damage variable ω  would be given as  

 

fε

ε
ω ~

~
=  

(18) 

 

where fεω ~=  is the equivalent strain at complete 

decohesion. It is not trivial how this model could be 

used to explicitly (ie. without iterating) determine 

ce  using an equation similar to Eq. (10). Alternative 

damage formulations of the form 

 

( ) cceKs ω−= 1  
(19) 

 

or 

 

ε~hss += o

 
(20) 

 

 all have in common not resulting in a trivial 

determination of ce . In practical terms, this means 

that a series of iterations would be needed for 

determining ce  within each time step. 

These limitations suggest that a model equal or 

similar to the one in Eq. (15) might still be 

preferable. Additionally, a simple modification 

guarantees full decohesion at the same time for all 

traction components. The modification consists in 

updating the orientation and magnitude of 
f

ce  so 

that all traction components vanish simultaneously 

at full decohesion. In Eq. (15), decohesion will 

happen at the same time for all traction components 

only if the crack strain at complete decohesion has 

the same orientation as 

 

















=
f

n

f

mn

f

n

f

c

lγ

γ

ε

e  
(21) 

 

given by Eq. (16). It is clear that 
f

ce  as determined 

from from Eq. (16) is parallel to 
o

ce . However, at 

time step (i), the crack strain corresponding to an 

earlier time step (j) is known (for now, suppose for 

instance j = i - 1), and its direction is a best estimate 
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to the direction of 
f

ce  than 
o

ce . Using the crack 

strain corresponding to time step (j), see also Fig. 4, 

the cohesive law in Eq. (22) follows. 

 

 

Fig. 4: Updating the estimate of 
f

ce  

 

In order to guarantee correct energy absorption, the 

magnitude of 
f

ce  at time step (i) is obtained from 

 

( )
)(

)(
)()( 2

j

j

c
j

c

i
f

c

EE

s
ee

−
+=  

(23) 

 

 and the three components are recovered as 

 

( )
)(

2

)( )( i
f

c

o

if

c

j
e

s

s
e =  

(24) 

 

 In Eq. (23), the variable 
)( jE  is the energy E at 

time step (j), and is given by 

 

∫= c

T dE es  
(25) 

 

4 Irreversibility and interpenetration 

The model as formulated so far does not 

account for irreversibility and contact of the crack 

faces in compression. Interpenetration can easily be 

accounted for by replacing Eq. (5) by 

 

( )
1cce eTεDσ −= .

 
(26) 

 

where the symbol 
1

⋅  represents the McCauley 

bracket applied to the first component of ce . 

For irreversibility, loading is defined as a 

situation for which the failure function φ  

(corresponding to the failure mode taking place) 

increases, thus resulting in the elastic domain being 

defined by the history variable κ  as 

 

( ) ( ) ( )ττφκ
τ

rt
t

==
≤

max  
(27) 

 

where ( )tr  is the elastic domain threshold. Time 

step (j) in Eq. (22) should be the time step 

corresponding to the last time step when κ  was 

modified. Assuming loading in a first instance, Eq. 

(26) can be used with the cohesive law given in Eq. 

(22). Then the loading assumption can be verified. If 

the assumption was wrong and the situation was of 

unloading, then the following cohesive law can be 

used to compute ce  in Eq. (10): 
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(28) 

 

where time step (j) corresponds to the last time step 

when κ  was modified. 

 

5 More than one failure event 

If more than one failure event takes place in 

the material (eg. matrix cracking and fibre breaking), 

then the formulation has to account for it. The 

stresses are in this case 

σ

ε

fε

E

First 

estimate 

fε

Current 

estimate 

j

i
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−= ∑

i

iccie 1
eTεDσ .

 
(29) 

 

 The traction acting on fracture surface p is 

 

σTs
T

cpp = .
 

(30) 

 

Thus one gets 

 

 

where 

 

[ ]cnccc TTTT ...21= ,
 

(32) 
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(33) 

 

and 

 

[ ]o

n

ooo
ssss ...21= .

 
(34) 

 

 Solving the previous equations implies 

inverting a matrix of order 3n where n is the number 

of fracture planes. Since this matrix is diagonal, this 

does not constitute a difficulty. However, a 66×  

matrix has to be inverted afterwards. 

Loading can be assumed first, and once the 

stresses have been found, it is still necessary to 

verify that no interpenetration or unloading occurs. 

The crack strain can be retrieved for each crack i 

using 

 

( ) ( )o

iicici ssDe −=
−1

*ˆ .
 (35) 

 

6 Application examples 

Application examples will be shown during the 

conference. 

 

7 Conclusions 
It is possible to formulate a model for damage 

propagation in composites which, while being 

suitable for implementation in standard FE codes, it 

can represent the propagation of cracks in the 

material.  
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