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1 Introduction  

Semi-empirical models derived for pseudo 

homogeneous ropes [1] have been employed to 

calculate the effective stiffness of ropes made out of 

MWNT [2]. Those approximate models predict a 

significant reduction with respect to the Young’s 

modulus of an individual filament by considering the 

effect of miss-orientation of the twisted filament 

with respect to the applied load, migration of 

filaments within the fiber and radial compression. 

Such models do not explicitly take into account the 

load transfer efficiency from the rope to an 

individual fiber, but have provided satisfactory 

approximate results, and a convenient way to 

understand and compare experimental data reported 

recently on macroscopic array. 

Several variations of the standard shear lag 

model can be employed as an alternative to estimate 

load transfer from a matrix into a fiber of finite 

length embedded in a homogeneous media 

composed by the other fibers [3]. 
The main objective of the present work is to 

employ previously calculated values of shear 

stiffness of single walled carbon nanotube arrays [4] 

to estimate the magnitude of overlap length 

necessary to attain efficient load transfer between 

filaments in a rope. On a first approximation the 

model neglects the effects of helical wrapping which 

has been demonstrated to be of second order for 

ropes less than approx. 40nm dia.. This poses a 

problem because it invalidates one possible 

mechanism for enhancement of load transfer; the 

radial stress generated due to frictional forces. The 

results obtained indicate that due to the low 

interfacial shear modulus, the lengths necessary to 

attain a significant fraction of the stiffness of the 

constituent filament are on the order of several 

microns. Fabrication techniques capable of 

conferring such degree of perfection at that scale, in 

a rope do not exist at the present time. 

 

2 Model Development 

2.1 Geometry Conversion  

The effective modulus of an individual carbon 

nanotube under tension or flexure is not equivalent 

to that of a graphene sheet, since there is an area at 

the center that must be taken into account and does 

not contribute to the stiffening of the structure. 

The assumed wall thickness is equivalent to the 

separation distance between two consecutive 

graphene layers, which can vary from 0.31 to 0.39 

according to experimental reports [5]. This 

framework insures that no structure based on folded 

and rolled graphene sheets can have stiffness larger 

than that of graphite. 

For SWNT the assumed wall thickness is 

equivalent to the separation distance between two 

SWNT forming an array. Due to this approximation, 

in the converted geometry the individual carbon 

nanotubes are in contact with their neighbors. 

2.2 Shear Lag Models 

As explained in detail elsewhere [4], in order 

to keep solutions for beam bending analytical, the 

hexagonal symmetry of the carbon nanotube array 

can be replaced by a rectangular equivalent, or it can 

be replaced by a concentric cylinder array to 

consider one nanotube immersed in a homogeneous 

matrix, as depicted in Fig. 1. 

 
Fig. 1. Approximate Geometries for SWNT Array 
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A shear lag model developed to study stress 

transfer in concentric shells as those in MWNT [6], 

can be readily extended to the situation mentioned 

above. The input parameters are the shear stiffness 

of the interfacial regions and the approximations for 

the diameters of each layer, both of which have been 

calculated and reported elsewhere [4]. 

Typical values for the shear stiffness of the 

interfacial region of SWNT are as follows: 
 

 7-Elem. 61-Elem. 127-Elem. 

Interfacial Area, 

[m
2
*10

-15
] 

1.46 29.3 66. 0 

Interfacial Energy, 

[J/m
2
*10

-3
] 

13.1 22.1 17.5 

Interfacial Modulus, 

[MPa] 

371 236 151 

Table 1. Effective Properties of the Interfacial Regions in 

Shear 
 

The bold segment of the interfacial region 

indicates the area over which shear stress transfer 

takes place, for the hypothetical situation in which 

the center filament is pulled by the array. Note 

however that the present work neglects the capillary 

energy component that will arise as a result of 

creation of new surface area. Instead, the center 

filament is considered to be immersed in a matrix 

composed of the other tubes. This assumption allows 

a very simple form of the shear transfer parameter , 

as defined by Cox [3] in his seminal 1952 paper 

The well-known analytical solution of a shear 

lag model with this parameter results in the 

following expression for the effective Young’s 

modulus [3]: 
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The previous equation provides a first order 

approximation at the efficiency to transfer load 

applied only to the external layer of a seven element 

rope into the centermost element. 

The calculation of the shear transfer parameter 

, has received considerable attention in the 

literature, especially for applications to fiber pullout 

tests, where the outer diameter of the structure is not 

clearly defined [7]. For the problem at hand it has 

been assumed that the external radius of the matrix 

is equivalent to the distance from the center of the 

rope to the center of the outermost layer of elements, 

following the work of pan [8]. This approximation 

results in the following expression for the shear lag 

parameter: 
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Alternatively a shear lag analysis based on 

cylindrical solid bodies in contact yields the 

following expression for the same parameter [6]: 
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In the previous expression, h1 is the distance 

between the average radii of both cylinders, and R1 

is the average radius of the interfacial region. The 

shear modulus was converted from rectangular to 

circular geometry in Fig. 1, by considering the 

differences in cross sectional areas and the perimeter 

over which the load transfer takes place. 

These variations of the shear lag parameter 

lead to differences in the actual value but not on the 

trend, as shown: 

 
Fig. 2. Effective Young’s modulus as a function of 

Length and Shear Stiffness ay 

 

The differences between the two estimations of 

the shear lag parameter are not relevant compared to 

those due to the shear modulus of the interfacial 

region (or pseudo homogeneous matrix). A first 

order estimate for the stiffness of the interfacial 

regions in an array of carbon nanotubes, can be 

obtained from the corresponding value for graphite: 

4.5 GPa [5], however, recent reports have employed 

hybrid atomistic continuum models to estimate the 

bounds for such elastic constant [9], and the results 

suggest slightly lower values, in accordance with the 

calculations based on energetics under flexure [4]. In 

principle the shear modulus of the interfacial region 
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can be close to that of in plane graphite (180 GPa), 

although it would require a very high density of 

crosslinks. In this case the length necessary to obtain 

the same efficiency is reduced drastically, as 

presented graphically in Fig. 2. 

The main conclusion that can be drawn from 

Figure 4 is that there is an enormous incentive for 

efforts aimed at strengthening the interface, because 

they have very relevant effects on the overlap length 

necessary to insure proper load transfer. Several 

experimental [10,11] as well as theoretical [12,13] 

works have reported on this issue. 

 

2.3 Conventional Semi-Empirical Rope Models 

The book by Hearle et al.[1] was followed for 

the calculation of the effective Young’s modulus of 

a helical rope (yarn). Although some parameters are 

empirical it can provide a first order approximation 

to be compared against the corresponding value 

from shear lag analyses presented before and 

experimental data [2]. 

There are three factors modifying the effective 

stiffness of a helical rope of any material: the miss-

orientation of the fibers with respect to the yarn due 

to twisting, the radial compression due as a result of 

axial deformation (poisson’s effect) of the yarn as 

well as the fibers, and finally the finite length of 

constituent fibers, which results in the necessity of 

migration as a mechanism to insure cohesion in the 

rope, as hypothesized by Hearle et al. in their book. 

The following equation combines the effects of 

mis-orientation, radial contraction and finite length: 
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The factor  is the helical angle to which the 

individual fibers are twisted in order to form a 

cohesive yarn. 

The Poisson’s or radial contraction effect can 

be calculated by means of the following equation: 
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(5) 

This effect might be especially important, as 

indicated by the experimental findings of Baughman 

and coworkers, who observed unusually large 

Poisson’s ratios for yarns made out of multiwalled 

carbon nanotubes. However such large contractions 

must be analyzed carefully to understand their 

relationship with changes in packing and volume 

fraction 

Finally the effect of finite length of the fibers 

was treated by Hearle et al. assuming that all fibers 

slowly migrate radially across the yarn, providing a 

mechanism to accommodate finite length fibers 

without loosing cohesion. 

In equation (5) μ is the friction coefficient 

between fibers (F=μN) and Q is the migration 

length, i.e., the length necessary for a fiber to 

migrate all the way from the outer surface to the 

center and back to the surface of the yarn. Df is the 

diameter of a fiber and Lf is its length. 

The migration length should be smaller than 

the fiber length in order for the stress transfer 

mechanism to be fully effective. However it would 

be possible to have migration lengths larger than the 

fiber length and still have some degree of load 

transfer. In the limit, the migration length becomes 

infinite and the stiffness reduces to zero. 

The values used for the calculation of effective 

modulus as a function of fiber length are presented 

in Table 2, and the results are plotted in Figs. 5-6. 

 
Parameter Value 

Helical Angle 25 deg 

Yarn diameter 2 μm 

Fiber diameter 10 nm 

Fiber Length 100 μm 

Yarn Poisson’s R. 2.0-2.7
2
 

MWNT Poisson’s R. 0.1-0.3
14

 

Migration Length 10-1000 μm 

Friction Coefficient 0.1-0.3 (?) 

Table 2. Yarn and Fiber Properties for Hearle’s Models 

 

The values of shear modulus estimated from 

flexural experiments cannot be used directly to 

estimate a friction coefficient because there is no 

unique relationship between both. The radial 

compression effect was calculated for a yarn 

Poisson’s ratio of 2.35 and a fiber Poisson’s ratio of 

0.2. The shaded region indicates the range of lengths 

measured by Baughman and coworkers in their 

report. 

The following figure was generated using a 

value of 0.2 for the friction coefficient. Recent 

experiments of graphite [15] suggest that it could 

eventually deviate appreciably from the assumed 

value if the two graphene surfaces are not 
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commensurate with each other. It could be 

negligibly small resulting in a very large impact on 

the stiffness, as presented graphically on Fig. 4, in 

which the migration length was kept constant at 0.1 

mm (100μm, equivalent to the fiber length). 

 

 
Fig. 4. Modeling Baughman’s Experiments 

 

 
Fig. 5. Ultralow Friction Coefficient 

 

Interestingly, for the lengths reported by 

Baughman et al. [2] and usual macroscopic values of 

the friction coefficient (~0.1), Hearle’s models 

predict a rather mild decrease in stiffness, unless the 

migration length falls bellow its critical limit. In 

contrast, their experiments show a drastic reduction 

in stiffness. i.e., the effective modulus measured is 

only 1.23% of the expected value, taking into 

account reductions by volume fraction, hexagonal 

packing fraction and the fact that the constituent 

nanotubes are partially hollow. The explanation for 

this unusually low value may lie in the surprisingly 

low value of the friction coefficient for graphitic 

structures. 

2.4 Model Comparison 

The following plot presents a comparison 

between the two models, showing that very low 

friction coefficients or shear modulus are 

responsible for the low effective stiffness: 

 
Fig. 6. Model Comparisons 

 

The value of the interfacial shear modulus that 

corresponds to a friction coefficient of ~0.1 is very 

low and close to the corresponding value reported 

for graphite [15]. For very low friction coefficients 

as those mentioned above, the corresponding shear 

stiffness becomes negligibly small. 

2.5 Conclusions  

According to the experimental data analyzed, 

the overlap necessary to insure proper load transfer 

among untwisted SWNT is rather large (on the order 

of microns). Fabrication techniques aimed at 

optimizing the overlap length would enhance 

significantly the load transfer efficiency of ropes. 

Interestingly, very short overlap lengths would be 

enough to transfer load satisfactorily, provided they 

are chemically modified to increase the interfacial 

shear stiffness. There are great, yet unexploited, 

potential benefits for surface modified carbon 

nanotube systems (both SWNT and MWNT) that 

have not been realized on a macroscopic scale. 

In the case of MWNT, the capillary forces are 

not as effective because the strength of the 

interaction decreases as size increases, as calculated 

by Girifalco et al. [16]. However experimental 

evidence suggests that friction between shells in 

MWNT can be very low facilitating sliding of one 

MWNT past another and making large overlap 

lengths theoretically possible. Frictional resistance 

among MWNT is still a subject of debate and it is a 

very relevant parameter in the design of ropes, as 

demonstrated by the calculations presented 

To summarize, the design of CNT structures 

should be addressed on a multiscale manner, seeking 

to extract advantages of the different load transfer 

mechanisms that dominate each scale. i.e. 

commensurability and shear stiffness at the 
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nanoscale, and twisting-induced stresses at the 

microscale 
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