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Abstract  

The most important aspect of formulating unit cells 
for micromechanical analysis of materials of 
patterned microstructures is the derivation of 
appropriate boundary conditions.  There is lack of a 
comprehensive account on the derivation of 
boundary conditions in the literature.  This paper is 
devoted to the generation of such an account, where 
boundary conditions are derived entirely based on 
considerations of symmetries which are present in 
the microstructure.  The implications of the boun-
dary conditions used for a unit cell are not always 
clear and therefore have been discussed.  It has been 
demonstrated that unit cells of the same appearance 
but subject to boundary conditions derived based on 
different symmetry considerations may behave 
rather differently.  One of the objectives of the paper 
is to inform users of unit cells that to introduce a 
unit cell one needs not only mechanically correct 
boundary conditions but also a clear sense of the 
microstructure under consideration. 
 
 
1  Introduction 

Micromechanical analyses have been on an 
increasing trend in order to understand the behaviour 
of modern materials with sophisticated micro-
structures.  Unit cells are often resorted to in order to 
facilitate such analyses.  The introduction of a unit 
cell is usually based on certain assumptions, such as 
a regular pattern in the microstructure, which is 
sometimes a reasonable approximation, or an 
idealisation otherwise.  A regular pattern offers 
certain symmetries which can then be employed to 
define the unit cell and to derive the boundary 
conditions for it for micromechanical analysis.  
Several accounts of the systematic use of 
symmetries for the derivation of the boundary 
conditions for unit cells have been presented by the 

author in [1-3].  In the literature, there are many 
accounts where simplistic boundary conditions have 
been imposed to unit cells in an intuitive manner, 
sometimes, rather casually without much 
justification.  In [4], boundary conditions have been 
so introduced that boundary effects have been 
considered and a significant effort has been made to 
include additional cells to form larger unit cells in 
order to reduce the boundary effects.  This would be 
absolutely unnecessary, had the boundary conditions 
been derived appropriately.  In many publications 
[4-9], to name but a few, boundary conditions have 
been so assumed that boundaries have to remain flat 
or straight after deformation in order to deliver 
simple boundary conditions, which cannot usually 
be fulfilled when the material is subjected to the 
macroscopic shear deformation.  Such simplistic 
boundary conditions are correct in a few special 
cases, e.g. square unit cells with reflectional 
symmetric microstructure when they are subjected to 
a deformation corresponding to a macroscopic direct 
strain.  Even so, there are implications on the 
permissible patterns of the microstructures, which do 
not seem to have been given any attention hitherto.  
Another confusing issue is how many boundary 
conditions need to be prescribed at any given part of 
the boundary of a unit cell.  Sometimes, only one 
displacement has been prescribed but in other cases 
more than one are prescribed.  In [10], equilibrium 
or compatibility conditions were imposed as a part 
of boundary conditions, which are in fact wrong, as 
will be explained later in the next section.  This 
paper is devoted to the issues as raised above, in 
particular, to the confusing issues associated with 
the use of reflectional symmetries. 

Because of the nature of the symmetries 
employed, the boundary conditions obtained for the 
unit cells are often in a form of equations relating 
displacements on one part of the boundary to those 
on another, referred to hereafter as equation 
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boundary conditions, because of the use of 
translational or rotational symmetries [1-3].  This 
may impose restrictions on the applications of these 
boundary conditions and hence the unit cells.  For 
instance, when finite elements are employed for the 
micromechanical analysis, as is often the case, the 
mesh to be generated must possess identical 
tessellation between the parts of boundary which are 
related through those equation boundary conditions.  
This could sometimes be difficult to achieve for 3-D 
problems, such as in particle reinforced or textile 
composites.  The constraints in equation form may 
not be available in some FE codes.  It is therefore 
desirable to avoid such equation boundary 
conditions whenever possible. 
2  The Concept of Natural Boundary Conditions 

Some of the confusions in deriving boundary 
conditions for unit cells result from the use of finite 
elements which is usually based on a variational 
principle of some kind in which some boundary 
conditions, called natural boundary conditions, are 
satisfied automatically as a part of the variation 
process.  The natural boundary condition is a 
mathematical terminology commonly used in 
variational principles [11].  The spirit of a 
variational principle is that the conditions for a 
functional to take its stationary value are equivalent 
to the satisfaction of the Euler equations and the 
natural boundary conditions corresponding to the 
functional.  In the context of the minimum total 
potential energy principle, the Euler equations are 
equilibrium equations of elasticity and the natural 
boundary conditions are the traction boundary 
conditions.  Almost all commercial FE codes are 
based on the minimum total potential energy 
principle or its counterpart, the virtual displacement 
principle, in which traction boundary conditions will 
be satisfied in the same way and at the same time as 
the equilibrium equations are satisfied when the total 
potential energy is minimised. 

It should be emphasised that natural boundary 
conditions should not be imposed prior to the 
variation process, especially when seeking an 
approximate solution, e.g. using finite elements.  It 
does not help to obtain a more accurate result but, 
rather on the contrary, it may prevent the total 
potential energy reaching its minimum in the 
solution space and hence lead to a wrong result.  The 
confusion associated with natural boundary 
conditions arises, perhaps, from the way they are 
described in textbooks.  They are often said to be the 
kind of boundary conditions which do not have to be 

satisfied when using a variational principle.  This 
can therefore be understood by some users in such a 
way that if these boundary conditions had been 
satisfied a priori, one might expect a better 
approximation.  This is wrong.  A more precise 
description of natural boundary conditions should 
state that they should not be imposed, as they will be 
satisfied automatically by the variational principle.  
The imposition of natural boundary conditions prior 
to application of the variational principle will result 
in no better approximation, in general.  Rigorously 
speaking, imposition of natural boundary conditions 
prior to variation is not a matter of the level of 
approximation.  Rather, it violates the integrity of 
the minimum total potential energy principle and is 
hence wrong. 
3  Sufficient and Necessary Number of Boundary 
Conditions for Unit Cells 

In the literature, it is often found, e.g. in [12], 
that the number of boundary conditions prescribed at 
the same part of the boundary varies from case to 
case.  Without appropriate justification, it is rather 
confusing.  As a result, incorrect usages are often 
found, e.g. in [4,10].  According to the theory of 
continuum mechanics for the deformation problem 
of materials in 3-D space, at any given point on the 
boundary, three prescribed boundary conditions are 
required in any logical combination of 
displacements and tractions.  For instance, for a 
boundary perpendicular to the x-axis, the three 
boundary conditions can be a prescription of the 
following 

or in the -direction
or in the -direction
or in the -direction

x

xy

xz

u
v
w z

σ
τ
τ

⎧⎪
⎨
⎪⎩

x
y   (1) 

where u, v and w are displacements in x, y and z 
directions respectively and σ and τ are direct and 
shear stress components with subscripts in their 
conventional sense. 

When the boundary conditions are imposed in 
the form of equations relating the displacements or 
tractions on one part of the boundary to those of 
another part of the boundary, the equation boundary 
conditions should be imposed to the following 

and
and
and .

u x
v xy
w xz

σ
τ
τ

⎧
⎪⎪
⎨
⎪
⎪⎩

    (2) 

Instead of three boundary conditions on one part of 
the boundary, there are six boundary conditions for 
two parts of the boundary. 

Bearing in mind that traction boundary condi-
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tions are natural boundary conditions in conven-
tional FE analyses, they will be left out of the 
prescription list.  For example, if part of the boun-
dary is subjected to prescribed , &xy xzu

3  

τ τ it is suffi-
cient and necessary to prescribe u only on this part 
of boundary for the FE analysis.  Any non-zero trac-
tion should be included as externally applied load 
rather than boundary conditions in an FE analysis. 

Applying the same argument to equation 
boundary conditions, it is obvious that equation 
constraints have to be imposed to all three 
displacements to be both sufficient and necessary, 
whereas equations for tractions can and should be 
left out, as in [2,3]. 

Because of the existence of natural boundary 
conditions which should not be imposed, the same 
part of the boundary under different loading cases 
may be subjected to different numbers of boundary 
conditions.  This causes confusions, often in 
connection to difference in the nature of symmetry.  
The loading and deformation can be symmetric as 
well as anti-symmetric.  Distinguishing one from 
another is essential when deriving appropriate 
boundary conditions associated with symmetry.  For 
example, when a deformable body symmetric about 
the x-plane (x=0) is subjected to symmetric loading, 
e.g. stretching in the x-direction, there is only one 
boundary condition on the symmetry plane, i.e. 

 while the two remaining traction boundary 
conditions, 

0u =
0xy xzτ τ= = , should not be prescribed.  

However, when the same body is subjected to anti-
symmetric loading, e.g. shear in the x-y plane, there 
will be two boundary conditions on the symmetry 
plane, i.e. v   and  w  and there is only one 
traction boundary condition, 

0= = 0
0xσ = , in this case, 

which should not be imposed. 
To conclude this section, it is clear that at a 

boundary of a unit cell, the number of boundary 
conditions to be imposed before a finite element 
analysis can be conducted is not definite.  It depends 
on the nature of the symmetries adopted in the 
definition of the unit cell.  However, one thing 
remains definite when introducing boundary 
conditions.  It is that only displacement boundary 
conditions should be imposed, not the natural 
boundary conditions.  When bending is involved, for 
instance in classical laminate theory, displacements 
should include all generalised displacements, i.e. 
translational displacements and rotational 
displacements.  The natural boundary conditions in 
this case are associated with membrane forces, 
bending moments and transverse shear forces. 

4  Selection of Unit Cells and Their Implications 

For argument’s sake, a microstructure in 2-D 
space of a square layout as shown in Fig. 1a is 
considered first, which can be perceived as, but not 
restricted to, a transverse cross-section of a UD 
composite or an in-plane pattern of a textile 
composite.  As the only symmetries available are 
translations, in the x and y directions, respectively, 
the unit cell as shown in Fig. 1b will have to be 
subjected to equation boundary conditions as given 
in [2] relating displacements on opposite sides of the 
unit cell while ignoring the traction conditions. 

However, if the material under consideration 
allows one to idealise it into a microstructure as 
shown in Fig. 2a, the repetitive cell as shown in Fig. 
2b would be the unit cell of smallest size if only 
translational symmetries are employed.  Obviously, 
the size of the unit cell can be reduced to that as 
shown in Fig. 2c after the available reflectional 
symmetries about x and y axes have been utilised.  
As a result, boundary conditions can be obtained 
without equations relating the displacements on the 
opposite sides of the cell.  Having used the 
reflectional symmetries, one needs to bear in mind 
two issues associated with a unit cell, as shown in 
Fig. 2c, which can be easily overlooked.  Firstly, the 
microstructure of the material the unit cell in Fig. 2c 
is given in Fig. 2a not as shown in Fig. 1a although 
the appearance of the unit cells in Fig. 1b and Fig. 2c 
look identical.  Secondly, some macroscopic strain 
states, in particular, associated with shear, are anti-
symmetric under the reflectional symmetry 
transformations.  Appropriate considerations should 
be given to the anti-symmetric nature when 
boundary conditions are derived from the symmetry 
transformations.  As a result, the number of 
boundary conditions for some loading cases would 
be different from those for the other cases. 

(a) (b) 

(a) (b) (c) 

Fig. 1  Square packing 

Fig. 2  Square packing with further reflectional symmetries 
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The ultimate unit cells obtained from Fig.1 and 
Fig.2 share the same appearance.  However, they are 
subject to different boundary conditions and are 
associated with different microstructures.  An 
obvious consequence of the difference in the 
microstructure is that the one in Fig.2a is 
macroscopically orthotropic while that in Fig. 1a is 
not necessarily the case, as will be seen later through 
an example.  Users of unit cells should be aware of 
the difference and decide if the difference has any 
significance for their particular applications while 
choosing the unit cell to be employed. 

Another regular pattern often encountered in 
the literature is hexagonal.  Arguments, similar to 
those above for the square pattern, apply to a large 
extent.  The only difference is that there are more 
ways to express the translational symmetries as 
discussed fully in [1,2].  Whether the repetitive cell, 
e.g. the rectangle or any of the hexagons shown in 
Fig.3, used to express the translation symmetries, 
can be further reduced in size depends on the 
existence of other symmetries, reflectional and 
rotational.  Without such additional symmetries, the 
smallest size would be a complete hexagon as shown 
in Fig.3, if one is prepared to employ translations in 
directions that are not perpendicular to each other.  
Otherwise, to involve orthogonal translations in x 
and y directions only, one will have to deal with a 
unit cell having a bigger size, as shown in the 
rectangle in Fig.3, which is obviously not unique.  
When analysing these unit cells, in general, equation 
boundary conditions will have to be employed. 

5  Boundary conditions for a unit cell from 3-D 
microstructure with reflectional symmetries 

Consider the case illustrated in Fig. 2 in a 3-D 
scenario.  The boundary conditions can be derived in 
general as follows, assuming the periods of 
translational symmetries in the x, y and z directions 
are 2bx, 2by and 2bz, respectively.  This is general 

enough to encapsulate regular packing layouts such 
as simple cubic, body centred cubic, face centred 
cubic and close packed hexagonal [3]. 

Assume there exists an intermediate repetitive 
cell equivalent to that in Fig. 2b which can represent 
the material fully using translational symmetries 
only and this cell is defined in the domain 

.x x y y zb x b b x b b x bz− ≤ ≤ − ≤ ≤ − ≤ ≤  (3) 
The material is subjected to a set of macro-

scopic strains { }0 0 0 0 0 0, , , , ,x y z yz zx xyε ε ε γ γ γ  which can 

be introduced as six extra degrees of freedom (d.o.f.) 
in an FE analysis, e.g. as six individual nodes, each 
having a single d.o.f., or six degrees of freedom of a 
special node.  Each of them can be prescribed to 
achieve a macroscopically uniaxial strain state.  
Alternatively, upon any of these extra d.o.f.’s, a 
concentrated force can be applied in order to impose 
a macroscopic stress while leaving the others free in 
order to produce a macroscopically uniaxial stress 
state.  The latter is certainly more desirable in most 
cases as a macroscopically uniaxial stress state is 
what one would need in order to measure an 
effective property of the composite. 

The translational symmetries require: 
02

0
0

x x

x x

x x

x xx b x b

x b x b

x b x b

u u b
v v
w w

ε
= =−

= =−

= =−

− =
− =
− =

  and  
0
0
0

x x

x x

x x

x xx b x b

xy xyx b x b

xz xzx b x b

σ σ
τ τ
τ τ

= =−

= =−

= =−

− =
− =
− =

 

  under translation in x-direction; (4) 
0

0

2
2
0

y y

y y

y y

y xyy b y b

y yy b y b

y b y b

u u b
v v b
w w

γ
ε

= =−

= =−

= =−

− =
− =
− =

  and  
0

0

0

y y

y y

y y

yx yxy b y b

y yy b y b

yz yzy b y b

τ τ

σ σ

τ τ

= =−

= =−

= =−

− =

− =

− =

 

  under translation in y-direction, (5) 
0

0

0

2

2

2

z z

z z

z z

z xzz b z b

z yzz b z b

z zz b z b

u u b

v v b

w w b

γ

γ

ε

= =−

= =−

= =−

− =

− =

− =

  and  
0

0

0

z z

z z

z z

  under translation in z-direction. (6) 

zx zxz b z b

zy zyz b z b

z zz b z b

τ τ

τ τ

σ σ

= =−

= =−

= =−

− =

− =

− =

 

The form of many of the above equations is not 
unique, especially, those associated with shear, 
depending on the way rigid body rotations are 
constrained.  The lack of uniqueness here also 
contributes to the likelihood of confusion when 
introducing boundary conditions for unit cells. 

To apply further reflectional symmetries about 
x, y and z planes, the problem has to be considered 
separately for individual loading cases expressed in 
terms of { }0 0 0 0 0 0, , , , ,x y z yz zx xyσ σ σ τ τ τ , as presented in 

the following subsections. 

Fig. 3  Hexagonal packing with reflectional symmetries 

Smallest unit cell possible but 
with equation boundary conditions

Simplest unit cell without 
equation boundary conditions
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5.1  Under 0
xσ  

Consider first the x-faces of the unit cell, i.e. 
those perpendicular to the x-axis.  0

xσ  as a stimulus 
is symmetric under reflection about x-plane 
(perpendicular to x-axis). Responses v, w and xσ  are 
symmetric while u, andxy xzτ τ  are anti-symmetric.  
On the symmetry plane (x=0), the symmetry 
conditions require 

0

0 0

0 0

0x x

x x

x x

u u

v v

w w

=

= =

= =

= −

=

=

=
   and  0 0

0 0

0 0

x xx x

xy xyx x

xz xzx x

σ σ

τ τ

τ τ

= =

= =

= =

=

= −

= −

  (7) 

In the above, the conditions on 
0x

v
=

, 
0x

w
=

 

and 
0x x

σ
=

 do not yield any constraints and they 
should hence be left free.  In (7), there are three 
boundary conditions in effect.  However, only the 
displacement boundary condition should be imposed 
on side , i.e. 0x =

0
0

x
u

=
=     (8) 

while 
00

0xy xz xx
τ τ

==
= =  are natural boundary 

conditions and should not be imposed.  The same 
argument will be adopted hereafter without referring 
to their nature of being natural boundary conditions. 

Considering the opposite faces at xx b= ± , and 
applying the symmetry condition, one has 

x x

x x

x x

x b x

x b x b

b

x b x b

u u

v v

w w

=

= =−

= =−

= −

=

=

=−
  and  

.

x x

x x

x x

x xx b x b

xy xyx b x b

xz xzx b x b

σ σ

τ τ

τ τ

= =−

= =−

= =−

=

= −

= −

            (9) 

In conjunction with the translational symmetry 
conditions as given in (4), one obtains the only 
remaining boundary condition on side xx b=  

0

x
x xx b

u b ε
=

=  .              (10) 

The boundary condition above introduces an 
extra d.o.f. 0

xε  into the system.  In an FE analysis, it 
can be prescribed in order to prescribe a 
macroscopically uniaxial strain state 0

xε .  However, 
if one wishes to impose a macroscopically uniaxial 
stress state 0

xσ , an appropriate concentrated force 
can be applied to this d.o.f..  The macroscopically 
effective stress 0

xσ  can be worked out from the 
concentrated force easily as discussed in [3], while 
the nodal displacement at this extra d.o.f. gives the 
effective macroscopic strain 0

xε  directly. 

Consider now the y-faces.  The stimulus 0
xσ is 

also symmetric under reflection about y-plane 
(perpendicular to y-axis).  Responses u, w and yσ  

are symmetric while v, andyx yzτ τ  are anti-
symmetric about y-plane.  Hence, on the symmetry 
plane (y=0) the symmetry conditions require 

0 0

0 0

0 0

y y

y y

y y

u u

v v

w w

= =

= =

= =

=

= −

=

  and  0 0

0 0

0 0

yx yxy y

y yy y

yz yzy y

τ τ

σ σ

τ τ

= =

= =

= =

= −

=

= −

            (11) 

A single boundary condition on side 0y =  is 
obtained 

0
0

y
v

=
=  .              (12) 

The symmetry conditions on the two opposite 
faces at yy b= ±  require 

y

y y

y y

y b y b

y b y b

y b y b

u u

v v

w w

= =−

= =

= =−

=

= −

=

y

−

 and 

.

y

y y

y y

yx yxy b y b

y yy b y b

yz yzy b y b

τ τ

σ σ

τ τ

= =

= =−

= =

= −

=

= −

y−

−

           (13) 

A single boundary condition for side  yy b=
0

y
y yy b

v b ε
=

=  .              (14) 

The boundary condition above introduces another 
extra d.o.f. 0

yε  into the system.  To impose a 

uniaxial macroscopic stress 0
xσ , the d.o.f. 0

yε  should 

be left free, so that 0 0yσ = .  The nodal displacement 

at the extra d.o.f. 0
yε  gives this macroscopic strain 

directly produced by 0
xσ  as a result of Poisson 

effect, from which the effective Poisson ratio can be 
easily evaluated.  On the other hand, this extra d.o.f. 
can be prescribed to impose a macroscopic strain 

0
yε , or a concentrated force can be applied to it to 

impose a macroscopic stress 0
yσ . 

Applying the same arguments to the z-faces, 
the boundary conditions on sides  and 0z = zz b=  
can be obtained as  

0
0

z
w

=
=  and 0

z
z zz b

w b ε
=

= , respectively,

               (15) 
where the extra d.o.f. 0

zε  was introduced through 
translational symmetry conditions (6).  To impose a 
macroscopic stress 0

xσ  alone, 0
zε  should be left free, 

so that 0 0zσ = .  The nodal displacement at the extra 
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d.o.f. 0
zε  gives this macroscopic strain directly.  

Alternatively, it can be prescribed accordingly in 
order to impose a macroscopic stress or strain in this 
direction. 

To summarise, under a macroscopic stress 
0
xσ , the boundary conditions on the three pairs 

of the sides of the unit cell are given by (8), 
(10), (12), (14) and (15), namely  

0
0

x
u

=
=  and 0

x
x xx b

u b ε
=

=  

0
0

y
v

=
=  and 0

y
y yy b

v b ε
=

=              (16) 

0
0

z
w

=
=  and 0

z
z zz b

w b ε
=

=  

where the extra d.o.f. 0
xε  is subjected to a 

concentrated force associated with 0
xσ , while 0

yε  
and 0

zε  should be left free to produce a 
macroscopically uniaxial stress state 0

xσ . 

5.2  Under 0
yσ  

With similar considerations as given above, the 
boundary conditions for the unit cell under 0

yσ  are 
identical to those in (16).  The only difference is that 
it should be the extra d.o.f. 0

yε that is subjected to a 

concentrated force associated with 0
yσ , while 0

xε  

and 0
zε  are left free to produce a macroscopically 

uniaxial stress state 0
yσ .  The nodal displacements at 

those extra d.o.f.’s give the corresponding 
macroscopic strains directly. 

5.3  Under 0
zσ  

The boundary conditions are again identical to 
those in (16).  However, the extra d.o.f. 0

zε should be 
subjected to a concentrated force associated with 

0
zσ , while 0

xε  and 0
yε  are left free to produce a 

macroscopically uniaxial stress state 0
zσ . 

5.4  Under 0
yzτ  

The nature of shear stresses is slightly more 
complicated than their direct counterparts.  With 
respect to a reflectional symmetry, one of the three 
shear components is symmetric while other two are 
anti-symmetric.  Under the reflection about the x-
plane, the stimulus 0

yzτ  is symmetric.  The responses 

v, w and xσ  are symmetric while u, andxy xzτ τ  are 
anti-symmetric.  Hence, on the symmetry plane, x=0, 

the symmetry conditions require 
0

0 0

0 0

0x x

x x

x x

u u

v v

w w

= =

= =

= =

= −

=

=

 and 0 0

0 0

0 0

x xx x

xy xyx x

xz xzx x

σ σ

τ τ

τ τ

= =

= =

= =

=

= −

= −

           (17) 

The only boundary condition to be imposed is 

0
0

x
u

=
= .              (18) 

On the opposite faces at xx b= ± , the reflectional 
symmetry conditions are similar to (17) but on 

xx b= ±  instead of x=0.  In conjunction with the 
translational symmetry conditions (4), they lead to 
the boundary condition 

0
xx b

u
=

= .              (19) 

Consider now the pair of sides parallel to the y-
plane.  The stimulus 0

yzτ  is anti-symmetric about y-

plane (y=0).  The responses u, w and yσ  are 

symmetric while v, andyx yzτ τ  are anti-symmetric.  
Hence, on the symmetry plane, the symmetry 
conditions require 

0

0 0

0 0

y y

y y

y y

u u

v v

w w

0= =

= =

= =

= −

=

= −

 and 0 0

0 0

0 0
.

yx yxy y

y yy y

yz yzy y

τ τ

σ σ

τ τ

= =

= =

= =

=

= −

=

           (20) 

The boundary conditions on y=0 are obtained as 

0 0
0

y y
u w

= =
= = .             (21) 

Notice that there are two displacement boundary 
conditions in this case as opposed to the x=0 plane 
on which there is only one boundary condition as 
given in (19).  They have to be imposed in order to 
define the unit cell properly under this loading 
condition.  There is one traction boundary condition 

0
0y y

σ
=
=  which has been ignored as a natural 

boundary condition. 
Applying the reflectional symmetry to the two 

opposite faces at yy b= ± , one obtains  

y y

y y

y y

y b y b

y b y b

y b y b

u u

v v

w w

= =

= =−

−

= =−

= −

=

= −

 and 

.

y

y y

y y

yx yxy b y b

y yy b y b

yz yzy b y b

τ τ

σ σ

τ τ

= =−

= =

= =−

=

= −

=

y

−

           (22) 

which lead to the following boundary conditions for 
side yy b=  

0
y yy b y b

u w
= =

= = .             (23) 

Similarly, the boundary conditions on z=0 
and zz b=  can be obtained, bearing in mind that 
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0
yzτ  is anti-symmetric about z-plane 

0 0
0

z z
u v

= =
= =  

0
zz b

u
=

=  and 0

z
z yzz b

v b γ
=

=              (24) 

where the extra d.o.f. 0
yzγ  is introduced through the 

translational symmetry conditions (6), which can be 
associated with 

zz b
u

=
 instead of 

zz b
v

=
 if the rigid 

body rotation of the unit cell is constrained 
differently.  There will be no difference whatsoever 
as far as the deformation is concerned, provided that 
it has been dealt with correctly.  The same applies to 
the consideration of the two subsequent loading 
cases without further explanation.  To impose a 
macroscopic stress 0

yzτ , a concentrated force can be 

applied to the d.o.f. 0
yzγ .  The nodal displacement at 

0
yzγ , obtained after the analysis, gives the 

corresponding macroscopic strain directly.  Since w 
is not constrained on  and , these faces 
do not have to remain flat after deformation. 

0z = zz b=

As a summary, all boundary conditions for the 
unit cell under macroscopic stress 0

yzτ  are as follows 

0
0

x
u

=
= , 0

xx b
u

=
=  

0 0
0

y y
u w

= =
= = , 0

y yy b y b
u w

= =
= =              (25) 

0 0
0

z z
u v

= =
= = , 00 &

z z
z yzz b z b

u v b γ
= =

= = . 

Notice that there are different numbers of conditions 
on different sides.  In general, symmetry produces 
one condition while anti-symmetry results in two.  
The same applies to the subsequent shear loading 
cases where details of the derivation are omitted. 

5.5  Under 0
xzτ  

After considering all symmetry conditions, the 
boundary conditions for the unit cell subjected to 
this loading condition can be obtained as  

0 0
0

x x
v w

= =
= =  and 0

x xx b x b
v w

= =
= =  

0
0

y
v

=
=   and 0

yy b
v

=
=           (26) 

0 0
0

z z
u v

= =
= =  and 0 & 0

z
z xzz b z b

u b vγ
= z=

= = . 

5.6  Under 0
xyτ  

The corresponding boundary conditions are 
0 0

0
x x

v w
= =
= =  and 0

x xx b x b
v w

= =
= =  

0 0
0

y y
u w

= =
= =  and 0 & 0

y y
y xyy b y b

u b wγ
= =

= =  

0
0

z
w

=
=  and 0

zz b
w

=
= .            (27) 

It has been shown in this section that, using 
reflectional symmetries additional to translational 
ones, unit cells can be formulated with rather 
conventional boundary conditions (16) for loading in 
terms of microscopic stress 0

xσ , 0
yσ  or 0

zσ , (25) for 
0
yzτ , (26) for 0

zxτ  and (27) for 0
xyτ  which do not 

involve equations associating the displacements on 
opposite sides of the unit cell.  The price to pay is 
the fact that under different loading conditions, 
different boundary conditions may have to be 
employed.  However, equation boundary conditions 
associated with extra d.o.f.’s will have to remain.  
As these extra d.o.f.’s are not really a physical part 
of the mesh in terms of geometry, they can be placed 
any where and hence should not cause any problem.  
Most commercial FE codes have provisions to 
incorporate such equation boundary conditions. 
6  2-D Problems 

The 3-D presentation of boundary conditions 
readily degenerates into 2-D problems, such as plane 
stress, plane strain, generalised plane strain 
problems and anticlastic problems.  They apply to 
the rectangular unit cell obtained from the hexagonal 
layout shown in Fig. 6, as well as to the square one 
shown in Fig. 3.  They are given as follows without 
detailed derivations, in the y-z plane, for example. 

6.1  Under 0
yσ  and 0

zσ  

When a 2-D unit cell, in the y-z plane, is 
subjected to macroscopic stresses 0

yσ  or 0
zσ , the 

boundary conditions are the same as follows 

0
0

y
v

=
=  and 0

y
y yy b

v b ε
=

=  

0
0

z
w

=
=  and 0

z
z zz b

w b ε
=

= .           (28) 

The difference between the implementations to 
achieve these two macroscopically uniaxial stress 
states is a concentrated force that needs to be 
imposed to the extra d.o.f. 0

yε  or 0
zε , respectively. 

6.2  Under 0
yzτ   

The boundary conditions for a unit cell under 
macroscopically uniaxial shear stress 0

yzτ  in the y-z 
plane are as follows 

0
0

y
w

=
=  and 0

yy b
w

=
=  

0
0

z
v

=
=     and 0

z
z yzz b

v b γ
=

=             (29) 
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A concentrated force at the extra d.o.f. 0
yzγ delivers 

the macroscopically uniaxial shear stress states.  
As on boundary , displacement v is not 

constrained in any way and there is no restriction 
whether the side should remain straight after 
deformation.  The same applies to all other sides. 

0y =

6.3  Generalised plane strain problem and 
macroscopically uniaxial stress state 0

xσ  

For generalise plane strain problems, an extra 
d.o.f. 0

xε , in addition to 0
yε , 0

zε  and 0
yzγ , has to be 

introduced, which can be dealt with in the same 
manner as other extra d.o.f.’s corresponding to 
macroscopic strains.  This extra d.o.f. should be left 
free when applying macroscopically uniaxial stress 
states 0

yσ  and 0
zσ  but constrained for 0

yzτ , as 0
yzτ  is 

anti-symmetric under the reflectional symmetry 
while 0

xε is symmetric.  For UD composites, the 
generalised plane strain problem is the only 2-D 
formulation which is capable of achieving 
macroscopically effective uniaxial stress state. 

6.4 Under 0
xzτ  and 0

xyτ  in an anticlastic problem 

The anticlastic problem in the y-z plane 
involves only one displacement u.  When a 
macroscopically uniaxial shear stress 0

xzτ  is applied, 
from Subsection 5.5, the boundary conditions for the 
unit cell can be obtained as  

0
0

z
u

=
=  and 0

z
z xzz b

u b γ
=

=            (30) 

while edges y=0 and y=by are left free.  A 
concentrated force can be applied to the extra d.o.f. 

0
xzγ  to deliver a macroscopically uniaxial stress state 
0
xzτ  and the nodal displacement at 0

xzγ  gives this 
macroscopic strain directly. 

Similar arguments apply to the macro-
scopically uniaxial stress state 0

xyτ  and from 
Subsection 5.6, the corresponding boundary 
conditions are obtained as 

0
0

y
u

=
=  and 0

y
y xyy b

u b γ
=

=            (31) 

while edges z=0 and z=bz are left free. 
7  Deformation of the sides of unit cells 

7.1  3-D unit cell for particle reinforced 
composites with simple cubic particle packing 

A unit cell for simple cubic packing was 
presented in [3] and a mesh was generated with a 

spherical geometry for particle and appropriate 
constituent material properties in the examples.  
Only macroscopically uniaxial stress state 0

yzτ  is 
examined here.  The boundary conditions are as 
given in (16) and (25), respectively.  The von Mises 
stress contour plot is shown in Fig. 7.  The results 
obtained here also agree identically with those in [3], 
although the corresponding contour plot was not 
shown in [3].  According to the boundary conditions 
given in (25), only the x-faces, i.e., x=0 and x=bx, 
have to remain flat after deformation, while the 
boundary conditions on the remaining faces impose 
no restriction in this regard.  As a result, the 
remaining two pairs of faces, i.e. y-faces and z-faces, 
do not have to remain flat.  Fig.4 illustrated the 
curved trend for these two faces.  The curvature of 
these faces reduces as the disparity of properties 
between the particle and the matrix reduces.  In fact, 
flat faces are expected when the particle and matrix 
share identical properties.  The same observation 
applies to the unit cell when it is subjected to either 
of the two remaining macroscopic stress states, 0

zxτ  

and 0
xyτ .  The only difference is that the faces 

remaining flat after deformation become y-faces and 
z-faces instead, respectively, while other faces warp 
after deformation, in general. 

 
Fig 4  Deformation (simple cubic packing) 

 
7.2 2-D unit cell for UD fibre reinforced 
composites with square fibre packing 

Applying boundary conditions as given in 
Section 6 above, 2-D unit cells can be analysed 
pertinent to UD fibre reinforced composites with 
circular fibre cross-section.  The examples here 
correspond to the cases published in [2].  As in [2], 
generalised plane strain conditions apply to the 
problem for macroscopic stress states 0

xσ , 0
yσ , 0

zσ  

and 0
yzτ , the x-axis being along the fibre while the 

anticlastic problem for macroscopic stress states 0
zxτ  

and 0
xyτ  can be analysed using heat transfer as an 
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analogy to avoid 3-D modelling. 
Once again, perfect agreement in results can be 

obtained between the unit cells presented here and 
those in [1,2] for both square packing and hexagonal 
packing.  Similar observations to those in their 3-D 
counterparts of the previous subsection can be made 
on the deformation of the sides of the unit cells.  
Under direct macroscopic stress states, all the sides 
of a square unit cell remain straight after 
deformation.  However, under other loading 

conditions or for hexagonal unit cells, sides may not 
remain straight after deformation as shown in Fig.8 
unless the fibre has the same elastic properties as the 
matrix.  For macroscopic stress states 0

zxτ  and 0
xyτ , 

the sides may look straight from the perspective 
along the x-axis (fibre direction) but the y-z plane 
itself warps into a curved surface.  The sides are in 
fact curved in space. 
 

 

   
         (a)                                                   (b)                                             (c) 

Figure 5  Deform edges of unit cell (a) square under  (b) hexagonal under  (c) hexagonal under 0
yzτ 0

yzτ 0
yσ  

 
8 Effects of microstructures implied by different 
unit cells 

Assume a 2-D microstructure involving 
inclusions of an elliptical cross-section inclined at 
30°.  The ellipse is of 2:1 aspect ratio and occupies a 
volume fraction of 40%.  The elastic properties of 
the inclusion and the matrix are assumed as listed in 
Table 1.  The same mesh as shown in Fig.6 will be 
used for both unit cells corresponding to 
microstructures shown in Fig. 1 and 2, respectively.  

 
Fig. 6  Mesh (elliptical reinforcement) 
 
Table 1  Properties of the constituents 

 
The von Mises stress contour plots at deformed 

configurations under macroscopic stress states 0
zσ  

and 0
yzτ  (=1MPa) are presented and compared in 

Fig.7.  It is obvious that differently assumed 
microstructures, as implied by the two different unit 
cells result in different stress distributions 
microscopically.  The differences are even more 
pronounced when effective properties are extracted 
from these unit cells and compared as listed in Table 
2 where properties ηij are defined as the ratio of 
shear strain γj to the direct strain εi when the unit cell 
is subjected to a macroscopically uniaxial direct 
stress state σi, and µij is the ratio of shear strain γj to 
shear strain γi when the unit cell is subjected to a 
macroscopically pure shear stress state τi [13].  
These properties in the material’s principal axis 
vanish for orthotropic material, as is the case for the 
unit cell corresponding to Fig.2c. 

 z

 y 

Table 3  Effective properties 
Effective 
properties 

Unit cell in Fig. 
2b 

Unit cell in  
Fig. 3c 

E1 4.603 GPa 4.605 GPa 
E2 2.183 GPa 2.372 GPa 
E3 1.864 GPa 1.890 GPa 
G23 0.6803 GPa 0.6710 GPa 
G13 0.7016 GPa 0.7144 GPa 
G12 0.9180 GPa 1.0288 GPa 
ν23 0.3586 0.3663 
ν13 0.2606 0.2612 
ν12 0.2436 0.2378 
η14 0.01377 0 
η24 -0.08768 0 
η34 -0.04289 0 
µ56 -0.1143 0 

Properties Inclusion Matrix 
E 10 GPa 1 GPa 
ν 0.2 0.3 

Material represented by the unit cell corresponding 
to Fig.1b is not orthotropic but monoclinic in general 
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relative to the coordinate system as shown in Fig. 6.  
The differences, as illustrated here, will disappear 
when the ellipse is replaced by a circle but this is not 
a sufficient reason for ignoring the differences.  
When a unit cell is used, the user ought to be clear 

about the implications of the unit cell adopted on the 
microstructure of the materials, e.g. the one in Fig.1 
or the one in Fig.2, which are apparently different 
enough from each other. 

 

(a) (b) (c) (d) 
Figure 10  Deformation and von Mises stress contour plots for  theunit cell corresponding to  

(a) Fig. 2c under 0
zσ   (b) Fig. 3c under 0

zσ   (c) Fig. 2c under 0
yzτ   (d) Fig. 3c under 0

yzτ  
 

 
8 Conclusions 

Unit cells for micromechanical analyses have 
to be introduced with due consideration of the 
microstructures implied by the unit cell.  Boundary 
conditions for unit cells representing microstructures 
of periodic patterns should follow entirely from the 
symmetries present in the microstructure represented 
by the unit cell, rather than from one’s intuition.  
The symmetries include translations, reflections and 
rotations.  Using translations alone leads to 
boundary conditions in the form of equations 
relating displacements on opposite sides of the 
boundary of the unit cell.  Further use of reflection 
symmetries, if they exist, can avoid such equation 
boundary conditions, making the application of 
boundary conditions easier.  However, users must be 
aware of the differences in the microstructures 
implied by the boundary conditions for the unit cell.  
Although unit cells may look identical 
geometrically, different boundary conditions 
imposed would associate the unit cell with rather 
different microstructures.  It has been illustrated in 
this paper that such differences in the 
microstructures may result in rather different 
effective properties of the composites represented by 
the unit cells. 
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