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Abstract  

The effective bulk mechanical properties of 

low-density fiber composites are determined using 

network and effective continuum models. Low-

density composites are formed of fibers, binder, and 

air, and possess properties that depend strongly 

upon the characteristics of the individual 

constituents. The effective stiffness and strength are 

modeled using a three-dimensional network with 

specific focus on the nature of the joints that connect 

the individual fibers and the influence of fiber 

orientation. In the stiffness calculation, the bonds 

between fibers are assumed as ideal, and the 

primary factors that guide the response of the 

aggregate are fiber length, diameter, stiffness, and 

orientation. In strength calculations, the behavior 

and influence of the binder is far more complex. Two 

models are used to predict bulk failure mechanisms 

based on fiber strength and binding node strength. 

Our theoretical predictions showed excellent 

agreement with experimental results. 

 

1 Background  

There have been numerous attempts to 

model the effective properties of fibrous composites, 

including the stiffness and strength of paper and 

three-dimensional fibrous aggregates. The effect of 

fiber bond strength has been studied by Dodson [1], 

Page and Seth [2], and Wang et al. [3-4]. Network 

models for the analysis of these materials have been 

used by Arbabi and Sahimi [5], Hamlen [6], Rigdahl 

et al. [7], and Stahl and Cramer [8]. Bulk strength 

and stiffness estimates have also been examined by 

Herrmann et al. [9], Heyden and Gustafsson [10], 

and Sastry et al. [11]. Several of these studies 

pointed out useful limitations in network models or 

highlighted discrepancies between theoretical 

calculations and physical measurements.  

In this work, the focus is directed towards evaluating 

the primary features that influence the bulk 

mechanical properties of low density fibrous 

composites (LDFC). The class of composite under 

study in this work is composed of fibers, binder, and 

air, with a typical microstructure shown in Figure 1. 

The parameters of primary interest for these 

composites include fiber length, diameter, and 

orientation, along with the ratio of the fiber to binder 

material in total weight and also the mat 

density/weight itself. Each of these parameters can 

be varied to change the bulk properties of the 

composite. During the manufacturing of a specific 

class of LDFC, there is a finite amount of binding 

agent that is available for distribution within the 

composite. Part of this binder can coat the fiber 

length or can collect at the junction location between 

two or more connecting (or nearly so) fibers. The 

specific size, number, and shape of these binding 

nodes can greatly determine the overall strength of 

the final composite when failure is initiated by the 

fracture of these locations rather than the strength of 

the fibers themselves. In this study, two separate 

models are used to predict bulk strength of the 

aggregate. The first, which has been used in most 

studies for composites of this type, uses a criterion 

of sequential fiber failure. In the second, the 

sequential failure occurs at the binder nodes. For the 

type of aggregate studied in this work, it is the latter 

failure mechanism that is the more realistic and also 

the more complicated to represent. All composites of 

this class are three dimensional, and our 

computational model incorporates this reality. 

However, some composites of this type have a 

thickness dimension that is far smaller than the edge  
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lengths of the other two dimensions, and the 

composite takes on the appearance of a thin sheet 

with finite thickness. Other composites of this type 

are fully three dimensional in that they possess 

similar dimensions in all three coordinate directions. 

The focus of this study is on geometries that take on 

a planar form, but representative results are also 

explored for a fully three-dimensional composite. 

The bulk of this study is an exploration of the 

influence of the individual parameters that control 

strength and elastic stiffness. We also report results 

of physical measurements on each of these physical 

properties and compare these with our theoretical 

predictions. 

 

 

2 The Network Model 

The linear network model is based on the 

assumptions that the original and final 

configurations of the composite are essentially the 

same. Hence the fiber and the network undergo 

small displacements and small strains, leading to 

assumptions consistent with linear elasticity theory. 

The three-dimensional low-density fiber composite 

is made up of fibers, binders, and air. The fibers are 

the structural elements, and the binders are the 

contact points between fibers. The fibrous network 

is modeled as a collection of one-dimensional line 

elements (fibers) that possess axial, twisting, and 

bending stiffness through the material properties E 

(elastic modulus) and G (shear modulus), the fiber 

lengths between nodes (L), and the cross-sectional 

properties of area (A), moments of inertia about the 

two cross-sectional axes (Iy and Iz) and polar 

moment of inertia (J). This representation is very 

common, and the development of the theory can be 

found in numerous textbooks on finite element 

analysis or structural analysis. We omit details here, 

but note that the final result of this process is a 

system of linear equations of the form  

[ ]{ } { }FUK =                    (1) 

where [K] is the stiffness matrix, which depends 

upon all geometric, material, and orientation 

quantities for all fibers in the aggregate, {U} is the 

vector of nodal displacements, and {F} is the global 

force vector. The joints that connect the fibers at 

points of crossing are effectively rigid. They possess 

specific size and contain a limited value of 

maximum stress that can be applied. There are six 

components of displacement for three dimensional 

frame elements at each node. Those components of 

displacement are three translations and three 

rotations. Therefore, there are twelve degrees of 

freedom per element. The additional key parameters 

that drive the bulk response of the aggregate are the 

angles the fiber makes with the (x,y,z) axes. These 

are often random, but can also be controlled to 

somewhat tailor the behavior of the composite in 

specific directions. The element equations relating 

general displacements and forces components are 

given by  

[ ]{ } { }fuk =                 (2) 

where [k] is the element stiffness matrix, {u} is the 

nodal displacement component vector, and {f} is the 

force component vector. The element stiffness 

matrix can be derived by combining the force-

displacement relations obtained using the principle 

of virtual work for axial, shear, bending, and torsion 

effects. The stiffness matrix for a typical beam 

element arbitrarily oriented in space, in a local 

coordinate system, can be found elsewhere, and is a 

function of the elastic modulus E, the shear modulus 

G, the cross section area A, the element Length L, 

the moment of inertia with respect to local y-axis Iy, 

the moment of inertia with respect to local z-axis Iz, 

and the polar moment of inertia of the cross section 

J. The element stiffness matrix must be transformed 

from the local coordinate system to the global 

coordinate system using the transformation matrix. 

The rotation matrix for the forces at the nodes of the 

beam element are derived based on the angles α, β, 

and γ that each of the local coordinate axes form 

with the global X, Y, and Z axes respectively, and it 

is incorporated into the global statement of 

equilibrium. Once the element stiffness matrices in 

global coordinates are obtained, they are combined 

imposing compatibility of displacements and 

Fig. 1. Microstructure of a LDFC 
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equilibrium of forces at each node to obtain a final 

matrix equation of equilibrium for the complete 
composite or structure.  

3 Predictions of Bulk Properties 

The primary quantities of interest in this 

study are the bulk properties of the composite 

related to stiffness and strength. These are briefly 

discussed below.  

3.1 Bulk Stiffness 

The goal here is to smear the properties of 

the fibrous composite to simulate that of a 

continuum, and thus compute the effective bulk 

properties of the composite. This is accomplished by 

first defining a control volume V around a specific 

collection of fibers. Those fibers that intersect one of 

the six faces of the box determine the points that are 

then defined as boundary nodes, at which locations 

the resultant forces can be computed. The 

assumption of affine motion is then invoked. This 

means that the displacements around the surfaces of 

the control volume conform to the following 

relation: 

jiji xu ε=                  (3) 

Here u, ε, and x are the components of displacement, 

strain, and position, respectively. Note that indicial 

notation is employed, and repeated indices indicate 

summation. Since stresses cannot be computed at 

any arbitrary point within the solid since most of the 

control volume consists of air with the remainder 

composed of binder and fiber, the forces on the 

boundary can be computed to yield an effective bulk 

stiffness assuming that the entire control volume is 

composed of a linear elastic solid. A statement of 

virtual work is constructed for the composite under 

this assumption, yielding  

∫ ∑
=

=
V

n

j

iijijij uFdV
1

δδεσ    (4) 

Here σ is stress and F are the components of force 

on the exterior surface of the control volume, and δε 

and δu are the variations of strains and 

displacements respectively. If we assume that the 

stress within a control volume is constant, 

combining Equations (3) and (4) yields an 

expression for internal stress as 

V

xF
n

j

iji

ij

∑
=

=
1

σ     (5) 

This formula is extremely useful in 

providing an estimate of average stress within the 

composite, yielding a measure for the effective 

stiffness. The components of an effective elastic 

stiffness tensor can then be easily obtained by 

subjecting the composite model to different strain 

states, performing structural analyses of the network, 

and evaluating the stress using Equation (5). Finally, 

the elements of the stiffness matrix Cij are evaluated 

using the stress strain relationship given by the 
constitutive equations  

ijijij C εσ =                 (6) 

The elements of the stiffness matrix are 

determined one column at a time. For example, the 

first column is obtained by subjecting the network 

model to a strain state given by ε11≠0 with all other 
εij=0. 

3.2 Bulk Strength 

There are two primary modes of failure in a 

LDFC. The first is when the axial stress in a fiber 

exceeds the ultimate strength of the material. The 

second is where the binding node material fails, 

resulting in a loss of effective composite action and 

the subsequent progressive failure of the aggregate. 

We have constructed models of both mechanisms, 

and present a brief description below. 

3.2.1 Fiber Failure Model 

When the binding nodes are sufficiently 

strong, the means of load transfer through a LDFC is 

primarily through the axial stretch of the fibers 

within the aggregate. Although bending and twist 

are allowed and can physically occur, these effects 

are small relative to the axial deformation and force 

within each fiber. As the load increases within a 

LDFC, the fibers that are the stiffest (i.e. highest 

modulus and area with the shortest length and 

orientation most parallel to the action of the load) 

attract most of the load. As the loading increases, the 

internal forces increase in effectively linear fashion 

until a state of first-fiber-failure is reached. At this 

point, the fiber is computationally allowed to fail by 

removing it from the subsequent analyses. The loads 

are then re-distributed within the aggregate as 
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subsequent load steps are imposed. This class of 

model is not new, and in fact was used to study 

another class of LDFC by Stahl and Cramer [8]. It 

can be an excellent model if the bond strength 

between fibers is large. However, for the class of 

composite of most interest in this work, 

experimental evidence indicates that it is the failure 

of the nodes the responsible for the overall failure of 

the composite. 

3.2.2 Node Failure Model 

A typical failure zone for a LDFC is shown in 

Figure 2. The traits that are clearly observed in this 

figure are typical of other failure zones, and show 

that rather than fiber failure, the primary failure 

mechanism is the fracture of the binding node 
locations. 

 

 

Modeling this type of failure mechanism 

requires knowledge of 1) the strength of the bond 

between the bond and the fiber, 2) the size of the 

binder node location, 3) the shape of the binder 

node, and 4) the distribution of the binder at each 

location within the aggregate. The first of these 

parameters has been determined by experiment. The 

latter three items vary widely between differing 

nodes and also differing composites. It would be a 

difficult and tedious process to physically 

reconstruct the exact size, shape, and distribution of 

each node within a LDFC for purposes of analysis. 

In this study, we simplify the procedure by assuming 

uniform size, shape, and distribution of the nodes. 

There is no question that this assumption influences 

the overall behavior, but our main goals are to 1) 

assess the validity of this model by determining 

physical estimates of the composite breaking 

strength, and 2) comparing these results with 

experimental measurements. The assumptions used 

in this study yield a uniform node distribution given 

a certain amount of binder and fibers. The volume of 

the binder forming each node is the same for all 
nodes in the network.  

The primary model used to represent the bond is 

based on the assumption that the binding agent coats 

the fibers with a constant thickness, equal to 10% of 

the fiber diameter, at locations where two or more 

fibers cross. This results in a bond area, which is the 

contacting area the binder makes with the fibers, that 

can be determined based on the number of 

intersecting fibers, the assumed binder coating 

thickness, and the amount of binder available for the 

formation of the node. Once this area is known, the 

ultimate strength of the node can be determined 

using the experimentally measured failure stress 

between the binder and the fibers. 

After the binder locations have been 

determined, the analysis proceeds in much the same 

fashion as for the fiber failure model. The load is 

incremented in a series of steps and the stress at each 

bond is calculated using the resulting end forces 

from the analysis. These are compared with the 

allowable strength of each node. If the induced stress 

is higher than the allowable value, that node is 

assumed to fail by removing continuity of the nodal 

displacements at that location. Although the fibers 

are left intact, the loss in connectivity yields a 

redistribution of load within the aggregate composite 

that will eventually lead to bulk loss in both stiffness 

and strength. 

4. Physical Measurements 

Tensile tests were performed by the 

manufacturer on planar fiber glass mats to determine 

their Young's modulus and tensile strength. By 

planar we mean that although the mats have 

thickness dimension, most of the fibers are primarily 

contained within the x-y plane and the composites 

take on the appearance of a thin sheet. A typical 

physical mat of this class is manufactured with 

dimensions 254 x 254 x 0.889 mm with a density of 

10.48 x 10-5 g/mm3. The elastic modulus and 

strength of the glass fibers within this mat are 75.0 

GPa and 3.0 GPa, respectively. The fiber lengths are 

fixed at 25.4 mm, and the diameters are also 

constant at 0.016 mm. There is no preferred 

direction of the fibers during manufacturing, and 

hence the orientation of the aggregate is essentially 

random. The density of the fibers is 6.23 x 10-4 

g/mm
3
, with the binder density at 15.0 x 10

-4
 g/mm

3
. 

The fiber weight fraction within these composites is 

Fig. 2. Typical node failure 
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0.805. The tensile strength was determined to be 

9.19 MPa and the elastic modulus to be 787.73 MPa. 

The debonding strength between the fibers 

and binder has been experimentally measured at 

14.38 MPa [12].  

5. Applications and Dicussion 

The algorithm developed in this study is 

three-dimensional. However, the nature of the 

composites studied is largely two-dimensional 

(effectively, not exactly).  

One of the most important steps for the 

determination of the bulk properties of these 

composites is the definition of a network geometry 

that accurately models the actual geometry of the 

fiber glass mats. The two-dimensional networks are 

generated based on the actual fiberglass sheet 

properties related to mat geometry as discussed in 

the previous section. These parameters include mat 

thickness, mat density, fiberglass density, fiber 

weight fraction, fiber orientation, and fiber 

geometry. A basic fiber network model was 

constructed based on these primary characteristics 

with some small changes as discussed below.  

The method used to model the composite 

mat is to first divide the total thickness into a fixed 

number of layers whose individual thicknesses are 

equal to twice the fiber diameter. The doubled 

thickness takes into account the dimension of the 

binding nodes. A two-dimensional fiber network is 

then created for each layer of fibers and binder. Each 

layer satisfies the mass density and fiber weight 

fraction of the composite as defined by the physical 

specimen. Each layer of the network is generated by 

first passing a fiber through a random point inside 

the model volume. The fiber has an orientation that 

is generated at random. Two different approaches 

are employed to manage the sections of the fibers 

lying outside the control volume. In the first 

approach they are eliminated from the analysis (i.e. 

they are cut), and in the second approach periodic 

boundary conditions are considered. The binder 

nodes are created by determining the intersection 

points of the fiber with previous fibers in the current 

layer. This process is repeated by adding fibers until 

the mass density and fiber weight fraction of the 

composite are both satisfied. The final network is 

then created by laminated adjacent layers to 

construct a final structural system whose thickness 

matches the physical composite. The fibers within 

each layer are only allowed to connect with binder 

nodes with the fibers located in the corresponding 

adjacent layers. This modeling mechanism includes 

the key features of the mat without requiring an 

excessively large number of nodes, which would 
drastically slow our analysis procedure. 

5.1 Model Size Determination 

A fundamental problem with considering a 

mathematical representation of the full sheet of this 

composite is computational size. A 10.0 mm square 

coupon of the fiberglass mat yields a model 

requiring the solution of about one million degrees 

of freedom. For the failure model, this would be 

excessive. To reduce the size of the problem, several 

networks were created and analyzed. These 

networks were constructed using 1 to 7 layers using 

the procedure discussed in the previous paragraph. 

Results show that if the number of layers within the 

model is greater than three, there are only small 

changes in composite behavior and the elastic 

stiffnesses are nearly the same. It is therefore 

assumed that three sub-layers are sufficient to model 

the two-dimensional mats, and this representation is 

used for all analyses in this section.  

A second sequence of analyses was 

completed to determine the influence of the domain 

size on the resulting values of stiffness for two-

dimensional composites. The fiber length was fixed 

at 10 mm and the control volume (or area) was 

adjusted to determine the point at which the side 

lengths bounding the composite no longer had much 

influence. Six different side lengths were used: 5, 

10, 11, 12.5, 15, and 20 mm. The analyses were 

completed using periodic boundary conditions, in 

which fibers that leave the control area at, for 

example, the right edge then enter the control area at 

the left edge. The analyses were then repeated 

without considering periodic boundary conditions. 

The variable of interest is the C11 component of the 

elastic stiffness tensor. For each computed set of 

constants, a total of ten analyses were completed 

with random fiber orientation. The high and low 

values of the stiffnesses were then eliminated and 

the final eight values averaged to give the mean 

response.  

As expected, the stiffness decreases slightly 

as the control area increases. However, the changes 

in stiffness appear to taper off somewhat when the 

edge length is approximately 1.1 times the length of 

the fiber. We attribute the slight increase for the 
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fiber length of 12.5 to the random nature of the mesh 

generation. There was very little influence of non-

periodic boundary conditions when the control area 

is this large. We conclude that as long as the domain 

edge is at least 1.1-1.5 times the length of the fiber, 

the influence of edge size and boundary type is 

negligible. This value is used to determine the 

minimum edge length of our control volume in 

subsequent analyses.  

As a result of the previously described analyses, and 

to make the problem size more reasonable, the 

parametric studies to determine the influence of 

different parameters on the overall stiffness and 

strength of the fiber composites are performed on 

network models formed by three basic layers. The 

total thickness depends on the fiber diameter, with a 

side length of 10 mm, and a minimum side to fiber 

length ratio of 1.5. A typical fiber network is shown 

in Figure 3.  
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5.2 Bulk Elastic Constants and Strength: 

Comparison with Physical Measurements 

The two-dimensional analyses are initiated 

with a representative construction of a typical mat. 

The intent is to use this initial modeling effort to 

assess the relative level of accuracy for the bulk 

elastic constants for composite using physically 

realistic quantities. The values used in this 

preliminary study are designed to replicate those of 

the mat used in the experiments discussed in a 

previous section. The dimensions of the control 

volume are   27.94 mm x 27.94 mm x 0.0988 mm. 

The side dimensions match the ratio of edge length 

to fiber length of 1.1. The remaining fiber 

parameters are identical to those of the physical 

sheet described in the previous section. A total of 

five different random mesh networks were 

developed using these basic properties, with the 

elements of the elastic stiffness tensor determined 

using the method discussed previously. The number 

of nodes used to discretize the aggregate is nearly 

the same for each of these simulated networks, and 

is shown in Table 1 along with the average values 

for the engineering elastic constants. The two values 

for Young's modulus and those of the Poisson's 

ratios are both within about five percent of the 

values computed in perpendicular directions. This is 

a very reasonable indicator of the expected material 

isotropy for this number of fibers and analyses. Both 

values of elastic modulus are within 8 percent of the 

measured value of 787.73 MPa, and in fact the 

averaged value of the two primary directions is 

within 3 percent of this value.  

For the case of axial strength our theoretical 

model predicts an ultimate strength of 8.7 MPa 

which is about 5% higher than the experimental 

measurements.  

Given the number of variables in this 

problem and the difficulty of accurately assessing a 

true bulk area to compute effective stress, these 
results are considered to be in very good agreement.  

Table 1. Effective bulk engineering elastic properties for 

5 different network models and the corresponding 

average. (E and G in MPa) 

Ex Ey G ν12 ν21 

763.98 737.35 594.65 0.352 0.340 

719.64 810.09 565.73 0.306 0.344 

741.10 838.33 538.56 0.285 0.323 

713.62 729.29 616.81 0.360 0.368 

788.11 789.41 545.38 0.306 0.307 

745.29 780.89 572.22 0.322 0.336 

 

6. Summary and Conclusions 

A three dimensional network model was 

developed and applied to several representative low 

density fibrous composites. Overall comparisons 

with experiment yielded very good agreement 

between theory and experiment. A virtual work 

statement was used to determine the elements of the 

elastic stiffness tensor, and two failure models were 

developed based on fiber and node failure.  

Fig. 3. Typical fiber network constructed based on the 

proposed model. 
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The network model developed in this work 

gave predicted values for the elastic modulus and 

Poisson's ratio within eight percent of measured 

values, and a strength prediction for the nodal failure 

model within five percent of measured values. These 

results encourage the application of the proposed 

network model to the material and geometric 

optimization problem of LDFC, and to the analysis 

of three-dimensional fibrous networks. 
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