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Abstract  

In this study, partially debonded spherical 
particles in a particulate composite are analyzed by 
three-dimensional finite element method to 
investigate their load carrying capacities, and the 
way to replace a debonded particle with an 
equivalent inclusion is examined.  The variation in 
Young’s modulus and Poisson’s ratio of a composite 
with the debonded angle is evaluated for different 
particle arrangements and particle volume fractions, 
which in turn compared with the results derived 
from the equivalent inclusion method.  Consequently, 
it is found that by replacing a debonded particle 
with an equivalent orthotropic one, the macroscopic 
behavior of the damaged composite could be 
reproduced so long as the interaction between 
neighboring particles is negligible. 
 
 
1 Introduction 

In particulate composites, there are a variety of 
damage modes such as fracture of particles, 
interfacial debonding between constituents and 
cracking in matrix, which lead to the degradation of 
macroscopic material properties.  However, if the 
damage process could be controlled, the local 
damage might be available as toughening 
mechanism due to the energy dissipation[1].  The 
observed damage modes depend on the mechanical 
properties of the constituents and the interfacial 
strength between them.  In hard particle reinforced 
composites, interfacial debonding are most 
frequently observed mode of damage[2]. 

In this paper, the unit-cell analysis based on 
three-dimensional finite element method is 
performed to investigate the load carrying capacity 
of a partially debonded particle, and the way to 
replace the debonded particles to the equivalent 

homogeneous inclusions is examined in the 
framework of the continuum damage mechanics. 
 
2 FEM analysis of particulate composite 

including debonded particles 

2.1 Modeling of a debonded particle   
The particle arrangement and the debonding 

pattern are simplified in order to analyze particulate 
composites by three-dimensional finite element 
method. Although the particle arrangement of 
manufactured composites would have no regularity, 
in this study it is assumed that all particles are in the 
arrangement of simple cubic lattice(SC), body-
centered cubic lattice(BCC) and face-centered cubic 
lattice(FCC),respectively. Fig.1 shows the composite 
of BCC particle arrangement under the uniaxial load 
(σ =1).   For simplicity, all particles are assumed to 
be in the same stage of damage process; each 
particle has the debonding of 2θ on its top and 
bottom interface perpendicular to the loading axis.  
The above assumptions make it possible to deal with 
the overall composite materials as the unit-cell 
model under the appropriate boundary condition.  
Although the these assumptions are fairly 
impractical, we used them because the main purpose 
of this study is to investigate the change in the load 
carrying capacity of a single spherical particle with 
debonding. 

Considering the periodic particle arrangement 
in composite, the volume V in Fig.1 is selected as 
the analytic region for BCC particle arrangement.  
The meshed view of the volume V is shown in Fig.2, 
where a and r represent the length on a side of the 
cubic and radius of the particle respectively.  The 
boundary condition is selected so that the vertical 
displacements of the three planes which contact the 
origin equal to 0 as well as the vertical 
displacements of the other three planes keep the 
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same value in each plane.  Here the volume fraction 
of particles Vf is represented by the ratio of r to a.  
The simulation was carried out for three different 
particles(glass, copper and steel), and four kinds of 
Vf (0.01, 0.1, 0.2 and 0.3) were used. The material 
properties of the constituents are summarized in 
Table 1.  The commercially available FEM code 
ANSYS was used for the analysis and 20 nodes solid 
element was selected for every calculation. 
 
 

Table 1   Material properties used in the analysis. 

 Young’s 
modulus[GPa] 

Poisson’s 
ratio 

Matrix Unsaturated 
polyester 3 0.37 

Glass 70 0.22 

Copper 124 0.34 Particle 

Steel 206 0.30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1  Modeling of random particulate composite as BCC 

particle arrangement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  FEM mesh used in the analysis for BCC. 

2.2 Analytical results  
Figure 3 and 4 show the variation of the 

macroscopic Young’s modulus and Poisson’s ratio 
with the increase of the debonded angle θ.  Vertical 
axes of these figures are normalized by the initial 
undamaged composite properties.  It should be noted 
that the contact between particles and matrix 
becomes unignorable for θ > 60o, therefore hereafter 
we deal with the analytical results for θ < 60o.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3  Dependence of Young’s modulus of composite 
on the debonded angle. 

 
2θ

matrix particle

partial dedonding
V

σ

σ

 
a a

a
r

θ
x1

x2

x3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

SC
BCC
FCC

N
or

m
al

iz
ed

 Y
ou

ng
's 

 m
od

ul
us

Debonded angle        [deg.]θ

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

SC
BCC
FCC

N
or

m
al

iz
ed

 Y
ou

ng
's 

 m
od

ul
us

θDebonded angle        [deg.]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

SC
BCC
FCC

N
or

m
al

iz
ed

 Y
ou

ng
's 

 m
od

ul
us

θDebonded angle        [deg.]

Vf=0.1 

Vf=0.2 

Vf=0.3 



 

3  

EFFECTIVE STIFFNESS OF A PARTIALLY DEBONDED SPHERICAL PARTICLE

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Dependence of Poisson’s ratio of composite 
on the debonded angle. 

 
 
Although it is possible to define the contact elements 
on the interface of the debonded particle, for the 
case of uniaxial tension the mode I component of the 
stress intensity factor at the front edge of the 
debonding is negligible for θ > 60o, so that the 
propagation of the crack over θ =60o is impractical.  
From these figures, it is confirmed that Young’s 
modulus and Poisson’s ratio decrease with the 
increase of the debonded angle for every particle 

arrangements, and the variation is more pronounced 
for higher particle volume fraction, reflecting the 
increase of the total debonded area.  It can be seen 
also from these figures that the decreasing rate 
varies with the particle arrangement and are wide-
spreading for the case of high particle volume 
fraction, resulting from the interaction between 
neighboring particles.  In isotropic damage models, 
the debonded particle is assumed to be replaced by a 
void of equivalent size, therefore it is impossible to 
predict gradual development of the internal damage 
as shown in Fig.3, 4.  In this study, to predict the 
damage behavior of particulate composites more 
precisely, hereafter we propose the method to 
replace a debonded particle with an equivalent 
inclusion. 
 
3 Replacement with equivalent homogeneous 

inclusions 

3.1 Equivalent inclusion method 
In this chapter, the stiffness search of an 

equivalent inclusion is a main target.  The search is 
conducted under the condition that the fictitious 
composite(Fig.5(b)) can predict similar macroscopic 
behavior to the composite including partially 
debonded particles(Fig.5(a)).  Since the debonded 
particles could be treated as orthotropic materials for 
axisymmetric shape of debondings, there exist nine 
independent stiffness components for an equivalent 
particle[3], therefore it is impractical to determine 
all stiffness components simultaneously.  In this 
study, by introducing the concept of continuum 
damage mechanics, the stiffness components are 
represented by three independent variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Debonded particle              (b) Equivalent particle 
 

Fig.5  Replacement of a debonded particle with an 
equivalent particle. 
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In continuum damage mechanics approach, an 
averaging technique ignoring fine details is 
employed to deal with the problem, and the 
phenomena of progressive material degradation are 
introduced in the theory by a set of internal state 
variables(damage variables) under service loading.  
We could apply an averaging technique to an entire 
composite to characterize the internal damage 
process.  However, in this paper instead, the 
averaging technique is applied only to debonded 
particles.  Once the rule of homogenization of a 
debonded particle is established, we can predict the 
damage process of an entire composite with the aid 
of micromechanics[4],[5]. 

There have been a number of damage 
mechanics models developed.  In this study, the 
model proposed by Chow & Wang[6] is employed 
for simplicity.  The effective stress of a degraded 
material is defined by following equation. 
 

σDMσ )(=′                                                 (1) 
 
where )(DM  is tensor of rank four, which they call 
“damage effect tensor”.  Introduction of this new 
tensor leads to the following expression of the 
effective stiffness. 
 

[ ] 11 −−=′ MCMC T                                           (2) 
 
where C  represents the stiffness of the virgin 
material.  )(DM  is proposed by Chow & Wang[6] 
as follows. 
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where D1, D2 and D3 represent damage variables 
associated with x1, x2 and x3 axes respectively.  
Equation(3) gives the framework of material 
anisotropy, and typical orthotropic damage sates can 
be expressed by this equation. 

 The application of the above concept to 
debonding damage of particulate composites lead to 
the following equation in which pC′ represents the 
effective stiffness of a partially debonded particle. 

 

[ ] 11 −−=′ MCMC p
T

p                                                (4) 
 
where pC  represents the stiffness of an intact 
particle.  If  x1 axis is selected parallel to the loading 
direction, D1 represents the damage variable along 
with the loading direction, and  D2 and D3 are the 
damage variables perpendicular to the loading 
direction.  It can also be assumed that D2 always 
equals to D3 because of the circular shape of a 
debonded area in x2-x3 plane.  Consequently, a 
number of damage states can be produced by only 
two independent variables(D1, D2) along with Eq.(3) 
and Eq.(4). 
 
3.2 Optimum value search for damage variables 

In order to investigate the relationship between 
the debonded angle and the effective stiffness of the 
particle, an attempt was made to find out optimum 
damage variables for respective debonded angle.  As 
has been mentioned in the literature[7], damage 
variables(D1, D2) range from 0 to 1.  Therefore, 
optimisation is conducted in the following steps. 
 
① D1 and D2 are selected in 50 patterns 

respectively at interval of 0.02, then 50 × 50 
=2500 patterns of damage state are numerically 
created. 

② Effective stiffness of an equivalent inclusion is 
calculated with selected combination of damage 
variables(D1, D2) along with Eq.(3) and Eq.(4).  

③ Fictitious composites including equivalent 
particles having the above elastic properties is 
produced by FEM software, then macroscopic 
Young’s modulus and Poisson’s ratio are 
calculated. 

④ Comparing the macroscopic behaviour between 
strict analysis and equivalent inclusion method, 
optimum damage variables are selected. 

 
Figure 6 shows the results of the optimum 

value search for SC particle arrangement at θ=30o, in 
which z-axis represents the degree of suitability 
between strict analysis and equivalent inclusion 
method as shown in Fig.5(a),(b).  The degree of 
suitability is defined by the reciprocal number of the 
square error between them.  Figure 6(a) shows the 
result for Young’s modulus correspondence, and 
Fig.6(b) shows the result for Poisson’s ratio 
correspondence.  Furthermore, Fig. 6(c) shows the 
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(a) Optimisation for Young’s modulus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Optimisation for Poisson’s ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) Optimisation for Young’s modulus and Poisson’s ratio. 
 

Fig.6  Probability plot of damage variables. 
( SC, θ=30°,Vf= 0.1) 

result based on both of them.  In these figures, large 
value in z-axis means suitable combination of 
damage variables.  The analytical results indicate 
that selection of the optimum combination of 
damage variables is difficult for Fig.6(a), (b).  
Consequently, the consideration of two elastic 
constants(Young’s modulus and Poisson’s ratio) is 
required to identify the best combination with good 
accuracy. 

Over the past few decades, a large number of 
studies have been made on the damage formulation 
of composite materials.  In these previous models, 
generally, the comparison of macroscopic stress-
strain responses between the experiment and the 
prediction is made in order to verify the 
effectiveness of the proposed model.  However, as 
shown in Fig.6(a), there are a number of solution 
candidates, then verification based on the 
macroscopic stress-strain response is inadequate to 
demonstrate the validity of the model.  In this study, 
to avoid the above uncertainty both Young’s 
modulus and Poisson’s ratio are taken into 
consideration in optimum value search of damage 
variables. 
 
4 Results and discussion 

4.1 Effect of particle volume fraction and particle 
arrangement 

To begin with, glass particle dispersed 
composites are exclusively focused on to investigate 
the effect of particle volume fraction Vf and particle 
arrangement on the effective stiffness of a debonded 
particle. In Fig.7, the optimum combinations of 
damage variables(D1, D2) for individual debonded 
angle θ are plotted for each case.  From these figures, 
it is found that D1 has similar tendency of 
incrementation for every particle arrangements, 
although the discrepancy becomes detectable with 
the increase of Vf.  On the other hand, D2 start to 
increase around θ=45o for Vf=0.01, 0.1, whereas 
unpredictable results are obtained for Vf=0.2, 0.3.  
These analytical results indicate that the interaction 
between neighboring particles become remarkable 
for higher particle volume fraction.  It also should be 
noted that even in the composite with dilute particle 
concentrations(Vf=0.01, 0.1) the debonded angle at 
which D2 start to increase is delayed in FCC 
compared to other particle arrangements, which may 
also be caused by the interaction between 
neighboring particles.  In FCC, the length between 
neighboring particles is smaller than that of the other 
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Fig.7  Dependence of damage variables on the debonded angle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8  Dependence of damage variables on the debonded  

angle.(BCC) 
 
particle arrangements at the same particle volume 
fraction. For instance the ratio of the shortest distance 
from surface to surface between neighboring 
particles is SC : BCC : FCC =1 :0.96 : 0.81, so that 
the interference effect is pronounced in FCC. 

Figure 8 shows the comparison of optimum 
damage variables between different particle volume 
fractions in BCC.  Good agreement observed in this 
figure indicates that particle volume fraction does 
not have significant effect so long as the interaction 
between neighboring particles is negligible. Similar 
rule is also confirmed for other particle arrangements.  
Consequently, it is concluded that D1 and D2 are 
dependent only on the debonded angle θ , so that the 
effective stiffness of a debonded particle can be 
expressed by a function of θ alone in the case of 
dilute particle concentrations. 
 
4.2 Effect of particle stiffness 

Figure 9(a) shows the dependence of damage 
variables on particle stiffness for dilute particle 
concentrations(Vf=0.01, 0.1).  From these graphs, it 
is found that the increasing rates of D1 have similar 
tendency even if the particle stiffness is different; Vf 
has little effect for dilute particle concentrations.  
However it shows clear dependence on particles 
stiffness, which reflects that stress relaxation is more 
pronounced for the composite including higher 
stiffness particles.  Figure 10 shows the degradation 
of composite stiffness with increasing the debonded 
angle for three different particles at Vf=0.3.  
Reflecting the particle stiffness shown in Table 1, 
the stiffness of the intact composite(θ=0o) is large 
for steel particles and followed by copper and glass 
particles.  Also it is confirmed that the difference 
between three particles tends to converge with  
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debonded angle.  This implies that particles carry no 
longer significant load around θ=60o.  Consequently, 
large difference of the stiffness between constituents 
cause significant drop in the composite stiffness 
when debonded.  Then, it leads to the accelerating 
increase of D1 as shown in  Fig. 9(a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) damage variable D1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) damage variable D2 
Fig.9 Dependence of damage variables on the debonded  

angle. (BCC) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10 Degradation of Young’s modulus of composite  
with the debonded angle. (BCC, Vf= 0.3) 

In contrast, the dependence of D2 on particle 
stiffness seems unclear as shown in Fig.9(b).  There 
observed some scattering of the increasing rate over 
the debonded angle θ=45o.  In order to investigate 
the observed difference between D1 and D2,  
probability plot of damage variables for θ=45o was 
checked(Fig.11). As shown in Fig.11, the probability 
is less sensitive to the variation of D2 than that of D1, 
which lead to the relatively large error for D2 
identification. This is the reason for the observed 
scattering of D2 identification, that is D2 
identification might be influenced by the analytical 
condition such as the number or shape of the 
elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 Probability plot of damage variables. 
( Glass, BCC, Vf= 0.1, θ=45°) 

 
Next, an attempt is made to formulate the 

dependence of D1 on the stiffness ratio between 
constituents.  As shown in Fig.9(a), the increasing 
rate of D1 is pronounced when the composite include 
relatively hard particles.  Reminding that damage 
variables range from 0 to 1, they should converge to 
1 at θ=90o for each type of particle.  Now we select 
the variation of D1 for glass particles as the master 
curve of D1, and formulate the shift factor reflecting 
the stiffness ratio between different particles.  In 
order to satisfy boundary condition at θ=90o, the 
following transformation equation is assumed. 
 

n
gDD )(1 =                      (5)  

 
where, Dg indicates the damage variable of glass 
particle, and n is called shift factor. 
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The shift factor n is proposed as follows. 
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Rg : the stiffness ratio between glass particle and 

matrix 
Rp : the stiffness ratio between the particle under 

consideration and matrix 
Eg  : Young’s modulus of glass particle 
Ep  : Young’s modulus of the particle under  

consideration 
Em : Young’s modulus of matrix 
 
 
Following to Eq.(6) , if the same matrix is used, the 
shift factor n is dependent only on the stiffness ratio 
between different particles. 

In order to find out the optimum shift factor n 
for copper and steel particles, comparisons were 
made between strict analysis(Fig.9(a)) and 
predictions derived from Eq.(5).  Figure 12 shows 
the optimum shift factor for different stiffness 
ratio(Ep/Eg).  The shift factor is found to have linear 
dependence on the stiffness ratio between particles.  
The following is the approximated equation for n.  It 
should be noted that the maximum error of Eq.(7) is 
less than 2%. 
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Fig.12 Relationship between shift factor n and stiffness 
ratio between particles.（BCC, Vf=0.1） 

In Fig. 13, the comparison of damage variables is 
made between different particles, where the curves 
of copper and steel particles are shifted based on 
Eq.(5),(7).  There observed excellent agreement, so 
the master curve of D1 is obtained.  Consequently, 
the difference of particle stiffness can be formulated 
through Eq.(5),(7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.13 Master curve of damage variable D1(BCC, Vf=0.1).  

Shift factor n=1.31 for copper, n=1.69 for steel. 
 
4.3 Comparison between strict analysis and 

equivalent inclusion method 
As has been mentioned, a debonded particle 

can be replaced by an equivalent homogeneous 
inclusion, and damage variables(D1, D2) of the 
particle can be expressed by a function of θ alone so 
long as the interaction between neighboring particles 
is ignorable.  Now, we try to extend the above 
concept to relatively large concentration of the 
particles.  Strictly speaking, the replacement of the 
debonded particles to equivalent inclusions is 
inappropriate for Vf > 0.1. However, as shown in 
Fig.7, D1 is insensitive to Vf, and D2 ,which is 
significantly altered by Vf, has wide range of 
appropriate value for each debonded angle(Fig.11).  
Therefore, we can approximately use Fig.8 for wide 
range of particle concentration. 

Figure 14,15 show the comparisons between 
strict analysis(Fig.3,4) and equivalent inclusion 
method based on dilute particle concentration.  The 
approximate calculations are conducted using 
damage variables for SC particle arrangement 
(Vf=0.01).  From these graphs, it was found that the 
correlations between different analytical methods are 
fairly good for Vf=0.1 and acceptable for Vf=0.3.  
Therefore the equivalent inclusion method presented 
in this paper can be applied for wide range of 
particle concentration. 
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Fig.14  Comparisons of Young’s modulus between 
different analytical methods. 

 
 
5 Conclusion 

The unit-cell analysis based on three-
dimensional finite element method is performed to 
investigate the effective stiffness of a partially 
debonded spherical particle.  It was found that by 
replacing a debonded particle with an equivalent 
orthotropic one, the macroscopic behavior of the 
damaged composite could be reproduced so long as 
the interaction between neighboring particles is 
negligible.  Also the effective stiffness of a particle 
is derived as a function of the debonded angle in the 
framework of continuum damage mechanics.  It was 
also found that the increasing profile of damage 
variable D1 can be formulated based on the stiffness 
ratio of the constituents, and damage variable D2 is 
relatively insensitive to particle stiffness.  Although 
the present model is for the composite with dilute 
particle concentrations, it could approximately be 
used to predict the macroscopic behavior of general 
particulate composites. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15  Comparisons of Possion’s ratio between 
different analytical methods. 
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