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Abstract  

Mori-Tanaka’s micromechanics model is re-
derived from a new integral equation formulation in 
which a deviator field is introduced. It is shown that 
when the deviator is null, the original Mori-
Tanaka’s model is recovered. Due to the nature of 
unilateral variation of the deviator, the prediction of 
the effective moduli based on this formalism would 
never violate Hashin-Shtrikman’s bounds. 
Composite systems of an incompressible matrix 
containing spherical rigid inclusions or containing 
spherical cavities are used to illustrate the present 
approach. The predictions are compared with those 
from other micromechanics models and the unique 
features of the present approach are discussed.  
 
 
1  Introduction  

A variety of approaches can be followed to 
estimate the effective elastic properties of composite 
materials [1,2]. Among them, Mori-Tanaka’s model 
has received wide attention for its simplicity and 
easiness in applications [3-5]. Particularly, when the 
coupling-properties (elastic-electric, elastic-electric-
magnetic, etc.) are involved [6], such an explicit 
model for the prediction of physical properties based 
on the micro-geometry and micromechanics 
considerations provides a very cost-effective and 
time-saving design tool for the development of new 
composites. However, some limitations of this 
model have been noted [7]. 

A theory for the estimation of the effective 
properties of composites consisting of dispersed 
inclusions in a matrix is developed in this article. It 
will be shown that when the inclusions are 
indistinguishable and point-like particles, the 
theoretical predictions are identical to Mori-
Tanaka’s results. Since the derivation of the present 

theory is quite different from the traditional route, 
the theory provides a new perspective to look at this 
type of micromechanics model. In fact, by certain 
generalizations, the limitations of the original Mori-
Tanaka’s model can be completely removed. The 
prediction of the shear modulus of an incompressible 
isotropic matrix containing spherical cavities and 
rigid inclusions of uniform size would be used to 
illustrate this point.  

 
2 Integral Equation Formulation  

Integral equation formulation for the 
determination of elastic fields in a heterogeneous 
medium has been used by many authors [8,9]. The 
strain distribution in the composite can be expressed 
by 

( ) ')'()'()',()( 00 dxxLxLxxx mnklmnklmnijklijij εεε −Γ−= ∫    (1) 

where Γ is the second derivative of Green’s function; 
ε0 , L, and L0 are the applied strain, elastic stiffness 
of the constituent phase (at that location) of the 
composite and elastic stiffness of a reference 
medium, respectively. When the composite material 
under consideration is composed of a continuous 
phase and isolated inclusions of other phase, it is 
convenient to choose the matrix as the reference 
medium. Then, if x is in one of the inclusions (say 
Ω1), (1) can be written as (assuming that there are N 
inclusions in a representative volume element V) 
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On the other hand, if x is in the matrix, we have 
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For the purpose of determination of the effective 
properties, only the mean strain and stress, not the 
detailed distribution, are needed. Taking the 
ensemble average of (2), the mean value of the strain 
in the inclusions can be written as 
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Here all the subscripts have been omitted for brevity. 
Similarly the equation governing the mean value of 
the strain in the matrix can be written as 
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where Ω denotes the union of all the inclusions. We 
will write (3) and (4) in a more compact forms as 
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Even with such a reduction, finding the average 
strains in both phases from Eq (3) and (4) is still a 
formidable task for general cases. In order to provide 
the background for the development of present 
theory, in the next section we shall briefly review 
two specific approaches.  
 
3 Some Previous Models  

In the following discussion, both the matrix 
and inclusions are assumed to be isotropic. The 
shape of the inclusion is assumed to be spherical and 
the dispersion of the inclusions in the matrix is in 
such a way that overall properties of the composite 
can be regarded as isotropic. 
3.1 Dilute condition  

When the concentration of the inclusions is 
low, the interaction among inclusions can be 
neglected. The last term in the right hand side of Eq. 
(3) can be dropped. It is well known that the strain 
inside an isolated inclusion is uniform [10], Eq.(3) 
turns out to be  
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Since x is inside the inclusion, P is a constant tensor 
of rank four and depends only on the elastic moduli 
of the matrix. From Eq (5), the average strain of the 
inclusion can found as 
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while the average strain of the matrix can be readily 
determined by 
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where fin denotes the volume fraction of the 
inclusion. Accordingly, the effective moduli can be 
determined as 
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where superscript “Dil” has been used to signify 
Eq.(9) is under dilute condition. For isotropic phases 
and spherical inclusions we may write Eq. (9) more 
explicitly as 
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where κ and µ are bulk moduli and shear moduli 
respectively; while )43/(3 mmm µκκα +=  and 

)2015/()126( mmmm µκµκβ ++= . 

3.2  Mori-Tanaka’s approach  

When the volume fraction of the inclusions is 
not small, the proper account must be taken about 
the interaction among inclusions. Mori-Tanaka’s 
mean field approach [3] can be followed to treat this 
interaction approximately [11,12]. There are several 
ways to look at this model [5]; the following 
derivation provides an alternative view. 

The size of the composite is expected to be 
much larger than the size of the inclusion and in a 
representative volume element the number of the 
inclusions N is a large number, so we may take  
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1  −≈ NN .When the inclusions can be treated as 
point-like particles which may occupy anywhere in 
the composite just like the material point of the 
matrix, then it follows that 

< M > = < I >                                (12) 

By means of the Eq(12), canceling the term < I > 
and < M > in Eqs(3) and (4), it is found that 
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The above equation has exactly same form as 
Eq. (5) except that the mean strain in the matrix 
plays the role of the applied strain. Go through the 
similar procedure as discussed under the dilute 
condition, it is concluded that the effective elastic 
moduli can be predicted as 
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Note the differences between this pair of 
equations and the pair of Eqs.(10) and (11) are 
simply a  factor of )f1( in−  in front of α and β. 

It is worth mentioning that the elastic moduli 
predicted by Mori-Tanaka’s model correspond to the 
Hashin-Shtrikman’s lower (upper) bound [12] if the 
inclusion is harder (softer) than the matrix [13]. 

 
4 The New Approach  

4.1 Preliminary Considerations 

Strictly speaking, Eq. (12) is not valid if the 
finite size of the inclusions is taken into account. 
However; due to linearity of the problem, Eq.(12) 
may be re-written in a more quantitative way 

0
klijklijIM εΨ=∆>=<−><                  (16) 

where ∆ will be referred as the deviator while Ψ 
called the deviator tensor which is a positive definite 
tensor of rank four and its exact determination 
requires complete information of how the inclusions 
are dispersed in the matrix. The resulting predictions 
of the moduli now would depend on this new 
introduced parameter. Obviously, the calculation of 
Ψ requires actual information about the distribution 
of the inclusions. The information is usually in terms 
of certain statistical parameters. But in some cases, a 

rough estimate may be sufficient as we discuss in the 
following example 

We would like to consider an “old” problem: to 
determine the shear modulus of an incompressible 
isotropic matrix containing rigid spherical particle of 
uniform size. The prediction of the effective moduli 
can be written as 
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where fr denotes the volume fraction of the rigid 
particles; S is the Eshelby’s tensor. For this problem, 
only the shear modulus is involved, Eq.(17) can be 
regarded as a scalar equation. Writing Eq.(17) only 
up to second order terms for fr, we have 
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where S being equal to 2/5 has been used. Since ψ 
represents the average contribution of the strain 
enhancement local to the neighboring of the 
inclusions, it may be estimated as rf≈ψ                                    
Accordingly, Eq.(15) becomes 

)f5f
2
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The prediction is almost identical to the result of 
Chen and Acrivos [14] 
4.2 More Detailed Analysis 

Central to the present problem is how to 
evaluate the deviator, i.e. 

∫ −−Γ=∆ ')'(])]['()'()[',0( mininm dxxLLxpxpx ε       (20) 

which represents Eq.(16) in a more precise way. 
Here, pm and pin denote the probability density of 
finding an inclusion centered at x’ on the condition 
that the origin is in the matrix phase and in the 
inclusion respectively. Statistical homogeneity has 
been assumed in such a representation. If isotropy of 
the composite is assumed further, then x’ can be 
replaced by its radial distance and triple integral 
becomes simple one-dimension integral. However, 
exact evaluation of this term still needs much 
numerical effort which is avoided for the time being 
in the present investigation. In general, guided by 
this expression, it is proposed to write approximately 
for the deviator ∆ as 

in
min )(ˆ ><−=∆ εφ LLP                 (21) 
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where φ is a statistical number (scalar quantity) 
describing the overall dispersion of the inclusions in 
the matrix; P̂  being an isotropic tensor of rank four 
plays a similar role as P in Eq. (5). However, major 
difference between these two constant tensors 
should be noted: P̂ is used to denote the weighted 
average (not in a strict sense) response of the 
exterior point of the inclusion while P refers to the 
interior point.  Since a constant dilatation eigen 
strain of a spherical inclusion produce only 
dilatation-free deformation outside the inclusion, it 
is a reasonable approximation to assume that 

0ˆ =iijjP . Accordingly, by using Eq.(21) as a 
correction term to the  Mori-Tanaka model, the 
prediction of the bulk modulus is intact; only the 
prediction of the effective shear modulus needs 
modification. It is straightforward to find that 
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To make further progress, it is still needed a 
way to evaluate βφ ˆ . The approach is motivated by 
the fact that the order of magnitude of β and β̂  is 
the same. In fact, under certain circumstance they 
may have the same value. For example, when the 
matrix point can be regarded as an interior point 
inside a “homogeneous” inclusion which undergoes 
a deviatoric eigen strain ε*, the actual strain of the 
matrix point would be βε*. On the other hand, for an 
inclusion inside another inclusion of similar shape, 
when the outer inclusion (excluding the inner 
inclusion) undergoes an eigen strain ε*, the strain of 
the inner inclusion is zero [15]. In other word, the 
difference between these two quantities is simply 
given by βε*. Accordingly, in the following 
numerical computation, it is assumed that 

ββ =ˆ                                    (23) 

Since the deviator tensor must be positive 
definite and the prediction be compatible with the 
dilute condition, the statistical number φ is taken as 
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Apparently, Eq.(24) is valid only for small 
concentration. A more refinement may take the 
following form  
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The coefficients associated with such a series 
expansion depend on the underlying randomness of 
microstructures of the composite. The determination 
of these coefficients requires extensive 
computational effort which is to be avoided. Besides, 
the approximate nature of Eq.(21) indicates such a 
refinement is unnecessary for the same order of 
accuracy. Therefore, only Eq.(24) will be used in the 
following numerical calculations (but see  section 6 
for some remarks). 
 
5 Comparisons 

A variety of approaches can be used to predict 
the effective moduli of a composite [1,2,7]. The 
following comparison is made only for three models: 
Self-Consistent (SC) Scheme [16], Mori-Tanaka’s 
(MT) Model and the present Extended (EX) Mori-
Tanaka’s Model. To make the contrast more easily 
be visualized, only two extreme cases are under 
consideration. One case is incompressible matrix 
containing spherical rigid inclusions; the other case 
is associated with spherical cavities. Only the 
predictions of effective shear moduli are presented. 
Before presenting the results, it is worthwhile 
comparing the results with other “exact” predictions 
of reliable accuracy.  

By expanding Eq.(22) in terms of fin up to 
second order, using the fact that for incompressible 
matrix, β = 2/5, it is found that for rigid inclusions  

)f5f
2
51( 2

rr
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which is in agreement with Eq.(19). For original 
Mori-Tanaka’s model, it is predicted that up to the 
second order 

)f
2
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Comparing Eq.(26) and (27), it is concluded the 
prediction of present model is more faithful by using 
the results of Chen and Acrivos as standard values.   

On the other hand, for cavities it is found 
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The coefficient associated with the second order 
term is zero. It is interesting to observe that for 
original Mori-Tanaka’s prediction is 

)f
9

10f
3
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cc
mMT +−= µµ              (29) 

While the extensive numerical calculation of Chen 
and Acrivos showed that 

)f5.0f
3
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Apparently, based on Eq.(30), for porous materials, 
the prediction of the present model tends to 
underestimate while that of Mori-Tanaka tends to 
overestimate.  

In Table 1, results of composites containing 
rigid inclusions are displayed. It should be noted that 
the prediction of SC scheme becomes unbounded at 
fr = 0.4. Results of composites containing spherical 
cavities are shown in Table 2. SC scheme predicts 
that effective shear modulus becomes zero at fc = 0.5. 
Since the random-packing limit for uniform size of 
spheres is about 0.638, the calculation has 
accordingly been carried out up to the volume 
fraction of 0.64. 

 
Table 1.  Predictions of effective shear modulus of a 

composite containing spherical rigid inclusions 
based on different models 

Volume 
fractions µSC/µm  µEX/µm µMT/µm 

0.1 1.33  1.31 1.28 
0.2 2.00  1.78  1.63 
0.3 4.00  2.53 2.07 
0.4 ∞  3.78 2.67 
0.5 ∞   6.00 3.50 
0.6 ∞  10.38 4.75 
0.64 ∞  13.35 5.44 

 
Table 2.  Predictions of effective shear modulus of a 

composite containing spherical cavities based on 
different models 

Volume 
fractions µSC/µm  µEX/µm µEX*/µm µMT/µm 

0.1 0.83  0.83 0.84 0.84 
0.2 0.64  0.68 0.69 0.71 
0.3 0.44  0.53 0.55 0.58 
0.4 0.23 0.40 0.43 0.47 
0.5 0 0.29 0.32 0.38 
0.6 0 0.19 0.23 0.29 
0.64 0 0.16 0.19 0.25 

6 Remarks 

Comparing the present predictions with those 
of Chen and Acrivos, it is found that using the 
approximate expression for the deviator (i.e. 
Eq.(21)), the prediction of rigid inclusion reinforced 
composites (i.e. Eq.(26)) is much better than that of 
porous materials (i.e. Eq.(28)). This is not too 
surprising because the strains of rigid inclusions are 
truly constant (all uniformly equal to zero), whereas 
the strains of spherical cavities are not so.  
Accordingly, Eq.(21) becomes less accurate for 
cavities. It is possible to improve the accuracy by 
introducing more precise strain state of the inclusion 
into the integral form of Eq.(21), either by actual 
numerical simulations or other analytical approaches. 
However, it can be improved by modifying Eq.(24) 
as another empirical expression such as 
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By using Eq.(31), the prediction for rigid 
inclusions in an incompressible matrix is unchanged; 
while the prediction for cavities, up to second order 
term becomes 
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It appears that the prediction is still lower than 
Eq.(30), but discrepancy has been greatly reduced. 
Substituting Eq.(31) into Eq.(22), the prediction for 
the whole spectrum of the volume fraction has been 
shown in Table 2. 

Eq.(31) can also be used as a basis for the 
prediction of effective bulk modulus, explicitly it 
may be shown that 
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It is noted that when the shear moduli of the 
inclusion and matrix are the same, the prediction of 
Eq.(34) is the same as Mori-Tanaka’s prediction 
which turns out to be exact solution of Hill [17]. 

It might be instructive to emphasize the main 
difference between the present integral formulation 
and the traditional formulation. By introduction of 
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the deviator field ∆, the present formulation relies on 
the evaluation of a term like Eq.(20) which is 
absolutely convergent. On the other hand in the 
traditional formulation, non-absolutely converging 
integrals which arise because of long-range 
interactions of inclusions were encountered and such 
problems must be circumvented by the 
renormalization procedure or its equivalence [18]. 

Theoretically, a sample of infinite size is 
required for a proper definition of effective moduli. 
In practice, a sample of finite size cannot be avoided; 
the deviator then would be useful in this aspect as it 
provides a way for estimation of the influence of 
inclusion sizes. Without any calculation, it is ready 
to see that at the same concentration of inclusions 
the effective moduli of a composite system with 
small inclusion size tend to approach the original 
Mori-Tanaka’s predictions; whereas those with 
larger inclusion size tend to deviate from the Mori-
Tanaka’s predictions. 

 
7 Conclusions  

By introducing a deviator field (a strain field 
deviates from Mori-Tanaka’s model), a new integral 
equation formulation for the determination of 
effective properties of a composite material is 
developed. It has been shown that Mori-Tanaka’s 
model is valid only if the deviator is null. This 
implies that original Mori-Tanaka’s model can be 
applied to the case where the inclusions can be 
treated as point-like particles or under exceptional 
conditions that the deviator accidentally becomes 
zero. The deviator field depends on the actual 
microgeometry of the composite and it can be 
derived from theoretical considerations; can be the 
output of some numerical simulations; can also be 
the results of experimental measurements. In any 
way, the effective moduli so predicted would never 
violate the Hashin-Shtrikman bounds due to 
unilateral variation of the deviator. The numerical 
examples shown in this article clearly demonstrate 
this point. 
 
References 
[1] Torquato S. “Random heterogeneous media: 

microstructure and improved bounds on effective 
properties”. Applied Mechanics Review, Vol. 44, pp 
37-76, 1991. 

[2] Kachanov M., Tsukrov I. and Shafiro B. “Effective 
moduli of solids with cavities of various shapes”.  
Applied Mechanics Review, Vol. 47, pp S151-S174, 
1994.   

[3] Mori T., and Tanaka K. “Average stress in matrix 
and average elastic energy of materials with 
misfitting inclusions”. Acta. Met., Vol. 21, pp 571-
574, 1973. 

[4] Weng GJ. “The theoretical connection between Mori-
Tanaka’s theory and Hashin-Shtrikman-Wapole 
bounds”. Int. J. of Engineering Science, Vol. 28, pp 
1111-1120, 1990. 

[5] Benveniste Y. “Some remarks on three 
micromechanical models in composite media”. 
Journal of Applied Mechanics, Vol. 57, pp 474-476, 
1990. 

[6] Dunn ML and Taya M. “Micromechanics prediction 
of the effective electroelastic moduli of piezoelectric 
composites”. Int. J. Solids Struct., Vol. 30, pp 161-
175, 1993. 

[7] Christensen RM. “A critical evaluation for a class of 
micromechanics models”. J. Mech. Phys. Solids, Vol. 
38,  pp 379-404, 1990. 

[8] Wu TT “The effect of inclusion shape on the elastic 
moduli of a two-phase material”. Int. J. of Solids 
Struct., Vol. 2, pp 83-88, 1965  

[9] Willis JR “Variational and related methods for the 
overall properties of composites”. Adv. Appl. Mech. 
Vol.21, pp 1-78, 1981. 

[10] Eshelby JD “ The determination of the elastic field of 
an ellipsoidal inclusion, and related problems”. Proc. 
Royal. Soc. London Vol. 241A, pp 376-396, 1957. 

[11] Taya M and Chou TW. “On two kinds of ellipsoidal 
inhomogeneities in an infinite elastic body: an 
application to a hybrid composite”. Int. J. Solids 
Struct. Vol. 17, pp 553-563, 1981. 

[12] Hashin Z and Shtrikman S. “A variational approach 
to the theory of the elastic behavior of multiphase 
materials”. J Mech. Phys. Solids, Vol.11, pp 127-140, 
1963. 

[13] Weng, GJ. “Some elastic properties of reinforced 
solids, with special reference to isotropic ones 
containing spherical inclusions”, Int. J. Engng. Sci. 
Vol. 22, pp 845-856, 1984. 

[14] Chen HS and Acrivos A. “The effective elastic 
moduli of composite materials containing spherical 
inclusions at non-dilute concentrations”. Int. J. of 
Solids Struct., Vol. 14,  pp 349-364, 1978. 

[15] Chiang CR. “A note on eigenstrains”. Philosophical 
Magazine. Vol. 54A, ppL45-L47, 1986. 

[16] Budiansky B. “On the elastic moduli of some 
heterogeneous materials”. J Mech. Phys. Solids, Vol. 
13, pp 223-227, 1965. 

[17] Hill R. “Elastic properties of reinforced solids: some 
theoretical principles”. J Mech. Phys. Solids, Vol. 11, 
pp 357-372, 1963. 

[18] Batchelor GK. “Sedimentation in a dilute dispersion 
of spheres”. J. Fluid Mech. Vol. 52, pp245-268, 1972. 

 


