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Abstract  

Artificial Neural Networks (ANN) have recently 
been used in modeling the mechanical behavior of 
fiber-reinforced composite materials. The use of 
ANN in predicting fatigue failure in composites 
would be of great value if one could predict the 
failure of materials other than those used for 
training the network. This would allow developers of 
new materials to estimate in advance the fatigue 
properties of their material.  

In this work, experimental fatigue data 
obtained for certain fiber-reinforced composite 
materials is used to predict the cyclic behavior of a 
composite made of another material. The effect of 
the various mechanical properties in the training of 
the network is evaluated to obtain the most suitable 
combination of properties resulting in the best 
fatigue life prediction. An introduction to the use of 
Polynomial classifiers (PC) in the fatigue behavior 
is also considered. 
 
 
1 Introduction 

Polymer-matrix composites are finding 
increased use in aerospace, automotive, marine 
and civil infrastructure applications. In many of 
these applications, the material is subjected to 
cyclic loading triggering questions about the 
fatigue behavior of these materials. Since most 
of these composites are made from laminates 

consisting of unidirectional laminae, predicting 
the fatigue behavior of these laminae could be 
the initial step towards predicting the behavior 
of the laminate under cyclic loading. 

Proposed methodologies have either been 
based of damage modeling or based on some 
kind of mathematical relationship. One of the 
first fatigue failure criteria for unidirectional 
laminates developed was that by Hashin and 
Rotem [1]. Their criterion was expressed in 
terms of three S-N curves obtained from fatigue 
testing of off-axis unidirectional specimens 
under uniaxial loading. They concluded that the 
plane stress fatigue failure of laminae can 
accurately be predicted by their failure criterion. 

Awerbuch and Hahn [2] also performed 
some off-axis fatigue tests on composite 
laminae in an effort to characterize the 
matrix/interface-controlled failure. They 
attempted to fit their data using a power law 
equation. They concluded that the relationship 
between the normalized fatigue strength and life 
is only weakly dependent on the off-axis angle 
and that failure of unidirectional composites is 
like sudden death – it occurs without early 
warning or prior visible damage. 

Ellyin and El Kadi [3] used the data 
obtained from the previously mentioned 
references [1,2] and showed that the strain 
energy can be used as a fatigue failure criterion 
for fiber-reinforced laminae. A fatigue failure 
criterion was proposed based on the input strain 
energy. They later [4] extended their criterion to 
take into account both the fiber orientation angle 
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and the value of the stress ratio. Fatigue 
behavior of unidirectional glass fiber/epoxy 
composite laminae under tension-tension and 
tension-compression loading was investigated. 
A non-dimensional form of this criterion 
collapsed all data points, obtained from different 
combinations of fiber orientation angles and 
stress ratios, onto a single curve. 

Philippidis and Vassilopoulos [5] studied 
the effect of off-axis loading on the static and 
fatigue behavior of unidirectional and 
multidirectional laminates. Cyclic tests were 
carried out and 17 S-N curves were developed 
experimentally at various off-axis loading 
directions under four different stress ratios. The 
statistical analysis used for the evaluation of 
fatigue data provided results closely validated 
by the experimental data. From the constant life 
diagrams developed, they concluded that the use 
of Goodman straight line was not a good choice 
as it may lead, depending on the stress ratio, to 
either conservative or optimistic results. 

Kawai [6] and Kawai and Suda [7] studied 
the influence of non - negative mean stress on 
the off-axis fatigue behavior of unidirectional 
composites. Constant amplitude fatigue tests 
under different stress ratios were performed on 
plain coupon specimens with various fiber 
orientations. Their results showed that, for all 
fiber orientations, the relative fatigue strength 
becomes lower with decreasing stress ratio. 
They also indicated that off-axis fatigue data 
normalized with respect to the static tensile 
strength substantially fell on a single S–N 
relationship for each stress ratio. They also 
confirmed that the S–N relationships on 
logarithmic scales are almost linear over the 
range of fatigue life up to 106 cycles, regardless 
of the fiber orientations and stress ratios. A 
phenomenological fatigue damage mechanics 
model previously proposed by the authors was 
further developed to consider the effect of mean 
stress on the off-axis fatigue behavior. It was 
demonstrated that the modified fatigue model 
can adequately describe the stress ratio 
dependence as well as the fiber orientation 
dependence of the off-axis fatigue behavior 
under non-negative mean stresses. 

 

Epaarachchi and Clausen [8] developed an 
empirical fatigue model that includes the non-
linear effect of the stress ratio and the load 
frequency on the fatigue life. Fatigue data from 
the literature were used to test the model. 
Predictions were found to be in good agreement 
with the experimental data. 

Plumtree and Cheng [9] proposed a fatigue 
damage parameter to predict fatigue life of off-
axis unidirectional fiber reinforced composites. 
This parameter, based on the Smith-Watson-
Topper parameter used in metal fatigue, takes 
into account the effect of fiber orientation and 
mean stress. Applying this parameter to off-axis 
unidirectional composite fatigue data, the 
predicted results were found to be in good 
agreement with experiments for different 
fiber/load angles and stress ratios. Petermann 
and Plumtree [10] later proposed a 
micromechanics-based failure criterion to 
predict fatigue lives of unidirectional fiber 
reinforced polymer composites subjected to 
cyclic off-axis tension–tension loading. The 
criteria accounts for the fiber orientation angle 
as well as the stress ratio. The fatigue failure 
criterion was verified by applying it to different 
sets of experimental data. The predicted fatigue 
lives were found to be in good agreement with 
the experimental results for different angles and 
stress ratios. 

Varvani-Farahani et al. [11] developed an 
energy-based fatigue damage parameter to 
assess the fatigue damage of unidirectional fiber 
reinforced composites. The proposed parameter 
is based on the mechanism of fatigue cracking 
within the three damage regions of matrix, 
fiber–matrix interface, and fiber in these 
materials as the number of cycles progresses. 
The parameter involved the shear and normal 
energies calculated from stress and strain 
components acting on these regions. The 
proposed fatigue damage model successfully 
correlated fatigue lives of unidirectional 
composites at various off-axis angles and stress 
ratios. 

Artificial Neural Networks (ANN) have 
proved to be useful for various engineering 
applications. Due to their massively parallel 
structure, ANN can deal with many 
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multivariable non-linear modeling for which an 
accurate analytical solution is very difficult to 
obtain. ANN have already been used in medical 
applications, image and speech recognition, 
classification and control of dynamic systems, 
among others; but only recently have they been 
used in modeling the mechanical behavior of 
fiber-reinforced composite materials [12, 13]. 
The ability to learn by example is one of the key 
aspects of ANN. The system is considered as a 
black box and it is unnecessary to know the 
details of the internal behavior. These nets 
therefore may offer an accurate and cost 
effective approach for modeling fatigue life. If 
trained adequately, the ANN can simply be used 
to obtain the life prediction of a given set of 
fiber orientation / loading condition which is 
usually sought by designers. 

The use of ANN to predict fatigue strength 
of APC-2 graphite-PEEK composites was 
addressed in the work by Aymerich and Serra 
[14]. The input parameters to the ANN were the 
number of cycles to failure and the stacking 
sequence of the laminate while obtaining the 
fatigue strength as an output. They concluded 
that ANN potentially show that they are able to 
predict fatigue life of fiber reinforced laminates 
provided that a sufficiently large set of 
experimental data, representative of the 
characteristic damage models of the category of 
examined sequence, is available. They also 
concluded that increasing the number of 
laminate parameters without a significant 
increase in the number of learning data points 
leads to poor predictions. 

Lee et al. [15] evaluated the performance of 
ANN in predicting fatigue failure of laminates 
under various stress ratios. They investigated 
the various input parameters to find the 
combination that results in the optimum fatigue 
life prediction. They chose to use the maximum 
and minimum values of the stress as well as the 
failure probability level as input parameters to 
the ANN while obtaining the number of cycles 
to failure as an output. The authors also 
investigated the effect of the number of hidden 
layers and the number of stress ratios used in 
training on the fatigue life prediction accuracy. 

 The use of ANN to predict the fatigue 
failure of unidirectional laminae for a range of 
fibre orientation angles under various loading 
conditions was also considered by Al-Assaf and 
El Kadi [16]. Feedforward neural networks 
provided accurate relationship between the input 
parameters (maximum stress, stress ratio, fibre 
orientation angle) and the number of cycles to 
failure. The results obtained were found to be 
comparable to other current fatigue life-
prediction methods. To improve the fatigue-life 
prediction accuracy, other types of ANN 
structures were used [17]. Radial Basis Function 
(RBF), Modular (MN), Self-Organizing 
(SOFM) and Principal Component Analysis 
(PCA) neural networks were considered and 
compared to achieve the above-mentioned 
objective. The modular networks resulted in the 
most accurate prediction of the fatigue life of 
the material under consideration. 

The appropriate ANN architecture to use in 
a certain application, the number of hidden 
layers and the number of neurons in each hidden 
layer are, among other issues, that can greatly 
affect the accuracy of the prediction. 
Unfortunately, there is no exact method to 
specify these factors as they need to be 
determined on experimental and trial basis. To 
address the above-mentioned reasons, ANN, 
need to be tuned appropriately to give accurate 
predictions. Al-Assaf and El Kadi [18] have 
therefore introduced an alternate fatigue life 
prediction method: the polynomial classifiers 
(PC). This method allows for a satisfactory 
prediction of the composites behavior without 
the a priori need to determine several 
parameters or the possibility of obtaining 
various solutions should the process be run 
several times. They determined that the 
predictions obtained using the PC were 
comparable to those obtained using the 
commonly used feed-forward and recurrent 
neural networks. The advantage, of course, was 
the repeatability of the results and the lack of 
any a priori decision needed about the type of 
network better suited for a particular 
application, the type of algorithm used in 
training, the number of hidden layers used or the 
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number of neurons necessary in each of the 
layers. 

In all previously-mentioned studies using 
ANN or PC to forecast the fatigue life of fiber 
reinforced composites, the authors predicted 
failure with respect to various design parameters 
(such as fiber orientation and stress ratio) of one 
specific material It should be mentioned 
however, that one of the anticipated benefits of 
the successful application of ANNs or PC, 
would be that it could be possible to predict the 
lives of materials for which no fatigue data were 
available by using known characteristics of 
other laminates. Lee et al. [15] trained an ANN 
on fatigue data from four different material 
systems to predict the cyclic behavior of an 
additional material not used in the training. 
Monotonic mechanical property data of this 
additional material were also used in training. 
The results obtained appear unsatisfactory as the 
average root mean square error (RMSE) was of 
the order of 100% at its best. They concluded 
that, although this level of error is considered 
high and may be unacceptable for design 
purposes, it represents a spread on the normal 
log–life plot of a fraction of a decade, well 
within the normal experimental spread of data 
for composite materials. This inaccuracy in the 
prediction increased to a RMSE of 170% if the 
fiber used in the trained system is not of the 
same type used for the tested case (carbon fiber 
systems in training vs. glass fiber system in 
testing). They consequently concluded that there 
seems little prospect of transferring the 
predictive capability of a network with any 
degree of accuracy from one family of 
composites to another. El Kadi [12] has 
however suggested that better predictions might 
be achieved if a larger number of representative 
materials was used in the testing and appropriate 
material properties were used in the both the 
training and the testing stage. 

In the current work, ANN and PC are used 
to predict the fatigue life of unidirectional 
laminates based on the existing fatigue 
properties of laminates made from different 
materials. 
 

2 Artificial neural networks 

Feedforward ANN in general consist of a 
layer of input neurons, a layer of output neurons 
and one or more layers of hidden neurons [19]. 
Neurons in each layer are interconnected fully 
to previous and next layer neurons with each 
interconnection have an associated connection 
strength or weight. The activation function used 
in the hidden and output layers’ neurons is non-
linear, where as for the input layer no activation 
function is used since no computation is 
involved in that layer. Information flows from 
one layer to the other layer in a feedforward 
manner. Various functions are used to model the 
neuron activity such as sigmodeal, tanh or radial 
(Gaussian) functions.  

The input to a node i in the kth layer is given by: 

ki
j
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where wi,j,k represents the weight connection 
strengths for node j in the (k-1)th layer to node i 
in the kth layer, out i,k  is the output of node i in 
the kth layer and ki ,θ  is the threshold associated 
with node i in the kth layer. 
Collectively the hidden layers perform the 
application desired objective whether it is 
classification, modeling, pattern recognition 
…etc. The backpropogation training algorithm 
is commonly used to iteratively minimize the 
following cost function with respect to the 
interconnection weights and neurons thresholds:  
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where P is the number of training patterns and N 
is the number of output nodes. di and zi are the 
desired and actual responses for output node i 
respectively. 
The update of the network weights is calculated 
as: 
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where α is a momentum constant while η is the 
learning rate. xi is the input pattern at the 
iterative sample t and 0

Nnet   is the input to node 
N at the output layer.  

The training process is terminated either 
when the Mean-Square-Error (MSE) between 
the observed data and the ANN outcomes for all 
elements in the training set has reached a 
prespecified threshold or after the completion of 
a prespecified number of  learning epochs.  

Multilayer feedforward ANN with 
backpropagation training have been the most 
popular and commonly used because of their 
adequate generalizing capabilities. However, 
they could suffer from some drawbacks such as 
local convergence and the need for large 
training cases in order to make adequate 
generalization [19]. Other types of neural 
networks such as modular, radial-basis, self-
organizing, principal component analysis and 
recurrent networks are usually considered to 
overcome such problems and other problems the 
training data may have. 
 
 
3 Experimental fatigue data 

This work concentrates on the fatigue 
behavior of unidirectional fiber reinforced 
laminates subjected to tension-tension fatigue 
loads. Data was collected for a variety of 
published fatigue data with a stress ratio of 0.1 
(R=σminimum/σmaximum=0.1). Once the ANN has 
been shown to accurately predict fatigue failure 
under this condition, the same method can be 
extended to predict the fatigue behavior under 
different values of the stress ratio.  

Table 1 shows the experimental fatigue 
data used in the present investigation. Since the 
stress ratio is the same for all experimental data, 
there was no need to include it in the 
formulation. All input and output parameter 
were normalized to improve the computational 
efficiency of the neural networks. 
 

 
Table 1. Experimental fatigue data used in the 

current investigation 
Material Fiber 

Orientation 
angles 

Stress 
Ratio 

Reference 

E-Glass/Epoxy 0, 5, 10, 15, 
20, 30, 60 

0.1 Hashin & 
Rotem [1] 

AS/3501-5A 
Graphite/Epoxy 

0, 10, 20, 
30, 45, 60, 
90 

0.1 Awerbuch & 
Hahn [2] 

Scotchply 1003 
Glass/Epoxy 

0, 19, 45, 
71, 90 

0.1 El Kadi & 
Ellyin [4] 

E-Glass/Polyester 0, 15, 45, 
75, 90 

0.1 Philippidis & 
Vassilopous 
[5] 

T800H/2500 
Carbon/Epoxy 

0, 10, 15, 
30, 45, 90 

0.1 Kawai & 
Suda [7] 

Glass/Polyester 0, 90 0.1 Epaarachchi 
& Clausen [8] 

 
 
4 Life prediction using ANN 

Modular neural network architecture was used 
in the present study [19]. This is due to the 
encouraging results previously obtained by the 
authors [17] to predict the fatigue life of a single 
material for a variety of fiber orientation angles. 
The input parameters to the ANN were 
comprised of a combination of monotonic and 
cyclic properties. The monotonic properties 
used as input parameters were as follows: 
 
E0 Modulus of elasticity in the direction of 

the fiber 
E90 Modulus of elasticity in the direction 

perpendicular to the fibers 
S0

T Tensile strength of the laminate in the 
fiber direction 

S90
T Tensile strength of the laminate in the 

direction perpendicular to the fibers 
Vf Fiber volume fraction 
θ Fiber orientation angle 
 
The fiber volume fraction was later disregarded 
since its variation (for the considered materials) 
was minimal and its effect on the prediction 
negligible. In addition, the maximum applied 
stress, σmax, was also supplied to the ANN as an 



HANY A. EL KADI, Al-Assaf  

6 

input parameter. The sole output from the ANN 
is the number of cycles to failure (Nf). 

Since the range of fatigue life varied 
between 10 and 8,000,000 cycles, training the 
networks to learn such a wide range will 
produce unacceptable and unbalanced modeling 
performance. This will occur since the ANN 
will strive to minimize the overall error for all 
input patterns. Hence, minimizing the difference 
between the network output and observed data 
for high values of stress cycles would lead to 
incorrect results for the patterns associated with 
lower values of number of cycles to failure; a 
more suitable normalization is to the 
logarithmic values for the number of cycles 
between 0 and 1. The maximum stress applied 
varied between 12 to 1900 MPa. This valued 
was also normalized after taking the logarithmic 
values of the stress reducing the scale to values 
between 0 and 1. All other mechanical 
properties as well as fiber orientation angles 
were normalized linealy between 0 and 1. in the 
usual fashion. Static and fatigue data from five 
out of the six materials was used for testing 
purposes and the fatigue behavior of the sixth 
material was predicted. The Neurosolution 
Software[23] was used to construct, train and 
test the networks. 

Various parameters were considered to 
identify the ANN giving the optimum fatigue 
life prediction. The effect of the number of 
hidden layers and the number of neurons per 
hidden layer on the ANN performance was also 
investigated. A detailed account of varying the 
above-mentioned parameters and the effect on 
accuracy of the prediction is shown in [24]. 
Figure 1 shows a typical comparison between 
experiments and predictions obtained for a 
glass/epoxy composite. 
For the case shown in Figure 1, the root mean 
square error (RMSE) was found to be 36.2%. 
This error compares very favorably with the 
RMSE of 170% reported in [15]. This shows 
that the input parameters used in the current 
study are proper to obtain accurate results. The 
mean absolute error (MAE) obtained for Log Nf 
was calculated to be 0.904. This error seems 
acceptable considering the scattering usually 
present in fatigue data of composites.  
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Figure 1 Typical ANN predictions of the 

experimental data [4] 
 
 
5 Polynomial classifiers 

The polynomial classifiers are learning 
algorithms proposed and adopted in recent years 
for classification, regression, and recognition 
with remarkable properties and generalization 
ability [20-22]. Due to their need for less 
training examples and far less computational 
requirements, PC are used in this work for 
composite life predictions. In the training phase, 
the elements of each training feature vector, x = 
[x1, x2 ..., xN], are combined with multipliers to 
form a set of basis functions, p(x). The elements 
of p(x) are the monomials of the form: 

jk

j

N

j
x

1=
∏ ,  

where kj is a positive integer and  

Kk
N

j
j ≤≤ ∑

=1
0      (4) 

 
For example if the vector x consists of two 

coefficients, x=[x1 x2] and a second degree 
polynomial (i.e. K=2) is chosen, then:  
 

Txxxxxxxp ]1[)( 2
221

2
121=  (5) 

 
Once the training feature vectors are 

expanded into their polynomial basis terms, the 
polynomial network is trained to approximate 
an ideal output using mean-squared error as the 
objective criterion. The polynomial expansion 
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for all of the training set features vectors (L 
vectors) is defined as: 
 

T
Lx ])()()([ 21 xpxppM L=   (6) 

 
The training problem reduces to finding an 

optimum set of weights, w, that minimizes the 
distance between the ideal outputs and a linear 
combination of the polynomial expansion of the 
training data such that [20]: 
 

2
minarg Oopt −= Mww
w

   (7) 

 
where O represents the ideal output comprised 
of the column vector whose entries are the 
number of cycles to failure of the composite 
material under consideration. 
 
The weights of the identification models, optw , 
can be obtained explicitly by applying the 
normal equations method [20] such as 

Oopt += Mw     (8) 
Where M+ is the Moore-Penrose pseudo-inverse 
of matrix M [23]. 
 

In the prediction stage when an unknown 
feature vector, x, is presented to the network, 
the vector is expanded into its polynomial terms 
p(x) and its associated logarithmic number of 
cycles to failure prediction is determined such 
that  
 

)()log( xpw opt
fN =     (9) 

 
6 Life prediction using polynomial classifiers 
 Despite the many advantages of neural 
networks and their ability to obtain adequate 
results, the repeatability of their predictions is 
always a concern for both designers and users. 
Different fatigue life predictions can be 
obtained with neural networks depending on the 
type of network used and the number of hidden 
layers used. Furthermore, changing the back-
propagation training algorithm used also affects 
the results obtained. In a previous work [16], it 

was also shown that the number of neurons per 
hidden layer also affects the results obtained. In 
addition, one should remember that the initial 
weights chosen by any neural network are 
random in nature and therefore one should 
expect slightly different predictions if the same 
neural network is applied numerous times. This 
can however be remedied by taking the average 
results obtained from several runs. Finally it 
should be noted that the methods used by the 
neural networks are iterative ones rather that 
direct solutions. 
 To address the above-mentioned 
shortcomings of neural networks, the 
polynomial classifier (PC) method is 
considered. For a first order PC, the input 
parameters to the classifier are:  
 
p1(x) = [1, E0, E90, S0

T, S90
T, θ,  logσ] (10) 

 
Once again the output is log Nf. The MATLAB 
[25] environment and its associated toolboxes 
were used to construct, train and test the 
classifiers. The predictions obtained using the 
first order PC were compared to the 
experimental data [4] and were found to be 
inaccurate. A RMSE of the order of 119% was 
obtained. For this case, the PC predicted a 
nearly constant value for the fatigue life 
irrespective of the maximum applied stress and 
the fibre orientation angle.  
 To remedy this problem, a second order PC 
was used. In this case, the input parameters 
include the first order terms shown in eq. (10) in 
addition to the square of each of these terms and 
the cross multiplication of each two of these 
terms. 
 The RMSE obtained in this case reached a 
value of 174.4%. This higher error can be 
attributed to the fact that, although many of the 
polynomials terms are not critical to predicting 
the fatigue life, estimating their associated 
coefficients negatively affects the overall 
performance of the classifier. 
 Previous results on one single material [16] 
have shown that adding a few higher order 
terms to a first order PC can lead to an 
improved fatigue life prediction. The addition of 
several higher order terms to the first order 
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polynomial classifier was attempted. Table 2 
shows some of the added higher order terms and 
the corresponding RMSE obtained. As shown, 
the best results were obtained when the input 
terms: θlogσ and S90

T θ(logσ)3 were added to 
the first order terms. In that case, a RMSE of 
38.7% was obtained. The calculated MAE was 
0.783. 
 
Table 2 Additional higher order terms added to the 

first order solution and the RMSE obtained 
Additional higher order 

term 
RMSE 

θlogσ, S90
Tθlogσ 83.8% 

θlogσ, S90
T θ(logσ)2 45% 

θlogσ, S90
T θ(logσ)3 38.7% 

 
 Figure 2 shows the comparison between the 
predictions and the experimental results for this 
case. Studying the effect of adding the different 
parameters to the first order terms requires a 
more extensive investigation. 
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Figure 2. PC predictions of the experimental data [4] 

using higher order terms 
 
7 Conclusion 

Modular artificial neural networks and 
polynomial classifiers were used to predict the 
fatigue life of fiber reinforced composite materials. 
Training was performed on certain composites while 
the prediction was done for different materials. 

Contrary to previously published research, 
preliminary results show that both methods result in 
encouraging results with a RMSE of the order of 
38%. Previous research put this value at 170% when 
predicting the fatigue life of materials of different 
composition. 

More work is underway to predict the fatigue 
life of other materials and to investigate the effect of 
adding various higher order terms to the first order 
polynomial classifiers. 
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