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ll known that prediction of the 
operties of fibre-reinforced plastics 
 a detailed understanding of the stress 
nstituent materials. Shear-lag models 
 for stress analysis of unidirectional 
h partial damage. Although shear-lag 
t provide detailed information about 
ariations of stresses within the 

 stress field obtained from shear-lag 
ugh for purposes of material failure 
er monotonic loading.  
researches, the shear-lag approaches 

astic deformation of the matrix have 
 to obtain the stress distributions 
[1-3]. Nevertheless, these shear-lag 

analyses are inadequate to predict the stress states in 
the case of cyclic loading, since the total strain 
theory is employed as a constitutive equation of the 
matrix; the stress distributions are dependent on the 
strain path [4], and the total strain theory cannot take 
the variation of the strain path into consideration. 
Hence, an appropriate prediction of the stress states 
under cyclic loading requires an application of 
incremental strain theory [5]. 

In this paper, we employ an elasto-plastic 
shear-lag analysis assuming linear strain hardening 
of the matrix and apply J2 flow theory as a 
constitutive equation of the matrix. The crux of the 
present study is based on combination of the shear-
lag analysis and the incremental strain theory. 
Comparison of the predicted stress distributions with 
a model using the deformation theory is conducted, 
and the predicted distributions are also compared 
with FEM. It was confirmed that in the case of 
cyclic loading, the present method is valid to predict 
the stress states appropriately. 
2 Elasto-plastic Shear-lag Analysis 

2.1 Local Plasticity of Matrix 

In SFC (Single Fibre Composite) test, a fibre 
break is accompanied by the simultaneous formation 
of a local plasticity or an interfacial debonding. If 
the fibre-matrix interfacial strength is much higher 
than the matrix yielding stress, plastic deformation 
of the matrix can occur instead of initiation of the 
interfacial debonding as presented in Fig.1. Fig.1 is a 
typical result for a single fibre break of ECR glass-
vinylester composite. Obviously, a group of slip 
bands in the vicinity of the fibre break is observed in 
Fig.1. In the present model, we assume that the 
fibre-matrix interface is so strong that no interfacial 
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debonding occurs when fibre breaks. The plasticity 
of the matrix is assumed to be linear strain hardening, 
and Fig.2 shows a typical stress-strain curve of 
matrix resin and its elastic-linear strain hardening 
approximation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Photograph in the vicinity of a fiber-break 
point of ECR glass-vinylester composite. A group of 
slip bands is observed around a fibre break. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Stress-strain curve of matrix resin (solid line) 
and elastic-linear strain hardening approximation 
(dotted line) 
 
2.2 Governing Equation 

The model composite of length L consists of a 
single fibre of radius a encased in a cylindrical 
matrix of radius b as shown in Fig.3a. As presented 
in Fig.3b, we divide the matrix into tensile matrix 
and interfacial layer. The tensile matrix is assumed 
to be loaded in pure axial stress. In the interfacial 
layer, the normal stress in the z-direction is not 
sustained and the shear strain in the radial direction 
is assumed to be constant. Moreover, we choose the 
thickness of the interfacial layer, h, as 2a from an 
energy interpretation described in Appendix A. 

 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig.3. Schematic of the present model and definition 
of parameters: (a) cylindrical model, (b) idealized 
model composite with the matrix divided into tensile 
and shear parts 
 

Assuming that the axial strain localization of 
the tensile matrix is negligible, the axial 
displacement of the tensile matrix, uc, is written as 

zu cc ε=  (1) 

where cε  is logarithmic strain of the composite. 
The shear strain rate in the plastic region, γ& , is 
given by J2 flow theory and elasticity as follows: 

λττγ 2
m

+=
G
&

&  
(2)

where λ  is a proportionality factor enforcing 
normality of plastic strains to the yield surface, and 
the superposed dot represents differentiation with 
respect to time. Since an equivalent stress is written 
as τ3  in the interfacial layer, Eq. 2 is rewritten as 

τγ &&
A
1

=  (3)

The coefficient A is a function of the elastic and 
plastic properties of the constituents and given as 
follows: 
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Using equilibrium of forces acting on the fibre, 
the interfacial shear stress, τ, is related to the fibre 
axial displacement, u, as 

2

2

f2 z
uEa

∂
∂

⋅⋅−=τ  (5)

where E is Young’s modulus. The subscript f refers 
to fibre. Since the interfacial shear strain is assumed 
to be constant against the fibre radial direction in the 
interfacial layer, the shear strain is approximated as 
follows: 

( ) huu /c −=γ  (6)

Combining the equations above, the following 
differential equation with respect to u  is obtained 
and given by 
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Eq.7 is the governing equation to be solved. Then, 
boundary conditions are needed to solve Eq.7. At the 
fibre-break point, the fibre axial stress is zero, and 
the fibre axial strain is equal to the applied strain of 
composite far from the fibre break. These boundary 
conditions are as follows: 

0f =
∂
∂

=Lzz
uE  

(8)

c
0
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∂
∂

=zz
u  (9)

Eq.7 is solved by a finite difference scheme in the 
following section. 
2.2 Finite Difference Scheme 

Finite difference scheme is used to solve Eq.7. 
The fibre is discretized into N equal segments of 
length . In the present model, L is taken 
to be sufficiently long such that the solutions 
represent an infinite fibre. The time history of the 

loading is divided into two segments. The first 
segment is when the fibre just breaks, and the 
second time segment is the following cyclic loading. 
During the first segment, the traction at the broken 
end of the fibre is released gradually to zero, and the 
rate of the applied strain is zero. Therefore, the 
boundary condition at the fibre-break point becomes 
as follows: 

NLz /=∆
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where rfε  is the strain at which a fibre break occurs 
and bε  is sum of the released strain at the broken 
end of the fibre until time step t. During the second 
segment, the applied strain rate is not zero, but the 
traction at the broken end of the fibre is zero 
( rfb εε = ). Both of these time segments are 
discretized into a finite number of time steps t∆ . 
Using centered finite difference scheme, Eq. 7 is 
rewritten by the increment of the nodal 
displacements  and given by 1
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where cε∆  is equal to t∆ε c& . i denotes positions 
along the fibre in z-direction: i=1 at z=0 (far from 
fibre-break point) and i=N at z=L (fibre-break point). 
The increments of fibre axial displacements 
calculated from Eq.11 are used to calculate 
increments of the interfacial shear and fibre axial 
stresses. 

In the case of cyclic loading, since not only the 
plastic deformation under loading but also the 
reverse plastic deformation under unloading can 
occur as indicated in Fig.4, we conduct the 
calculation as follows; denoting the boundary node 
number between the elastic and plastic regions as ia 
and the number between the plastic and reverse 
plastic regions as ib, we define two parameters, ra 
and rb, as 

1t
1-

1-Y
a +∆

−
=

ai

t
air

τ
ττ

,   
1t
1-

1-Y-
b +∆

−
−=

bi

t
bir

τ
ττ  (12)

where  is shear yielding stress of the matrix and 
equal to 

Yτ
3/Yσ  and Y-τ  is Yτ− . Not to violate the 
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yielding condition, the increment of the applied 
strain, cε∆ , and the increments of the stresses,  
and 

fσ∆

τ∆ , calculated at time step t+1 are modified to 
the exact increments by multiplying ra under loading 
and rb under unloading in the case of 1,0 ba << rr . If 
this modification of the increments is not conducted, 
the calculations will result in misleading of the stress 
states. Flowchart of the present analysis is presented 
in Fig.5. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Schematic of shear stress-strain relationship in 
shear layer under cyclic loading 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Flowchart of the present analysis 
 
2.3 Stress Distribution 

We calculated the stress states under cyclic 
loading between cε =0.02 and cε =0. We used a 
model proposed by Okabe and Takeda [2] as the 
model employing the total strain theory. Mechanical 

properties of the constituents used in the calculation 
are listed in Table1. In this calculation, the matrix 
does not yield in tension since yielding strain of the 
matrix is obtained as 0.02 from Table1. Fig.6 
presents distributions of the fibre axial and 
interfacial shear stresses derived from the two 
different analyses.  
 

Table 1. Mechanical properties of the constituents 
used in the calculations 

 Fibre Matrix 
E (GPa) 78.0 3.0- 
Ep (GPa) - 0.10 

Poisson's ratio ν 0.20 0.40 
Diameter (mm) 0.012 0.50 

σY (MPa) - 60.0 
O

Yτ−

γ

τ

Yτ
unloading

O

Yτ−

γ

τ

Yτ
unloading
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As a natural result, both shear and fibre axial 
stresses derived from the deformation theory model 
are identical with the results of the present model at 

cε =0.02 and equal to zero at cε =0. According to 
Fig.6, it is confirmed that the present model can 
consider an effect of the difference of the strain path 
since the stress distributions at 0c =ε  are different 
from the distributions before loading, i.e. 0f =σ  and 

0=τ . From this point of view, we can know that the 
stress states derived from the present model 
dramatically vary along with the difference of the 
strain path. In addition to that, Fig.6 indicates that 
the reverse plastic deformation occurs in the vicinity 
of the fiber-break point. Moreover, the fibre axial 
stress becomes compressive near the fibre break 
under unloading. These results are interesting since 
both the plastic deformation of the matrix and the 
compressive stress in the fibre occur even if overall 
behavior of the composite is elastic and not 
compressive.  
3 Finite-element Analysis 

Finite-element calculations were conducted to 
assess the validity of the stress distributions derived 
from the present analysis. The model is illustrated in 
Fig.3b. The commercial finite-element package 
Marc was used. The length of the model, L, is 
chosen such that the interfacial shear stress is 
approximately zero at  [4]. The model is 
divided into 11,616 numbers of elements. The model 
is extended incrementally untill the applied strain 
reaches to the maximum value, and then the applied 
strain is removed incrementally to the minimum 
value. The results for the fibre axial and interfacial 
shear stresses are compared with the present shear-
lag model.  

3/2Lz =

 Fig.7 shows distributions of the interfacial 
shear and fibre axial stresses at 02.0c =ε  and at 

0c =ε  unloaded from 02.0c =ε . According to Fig.7, 
the present shear-lag results are shown to be in good 
agreement with the FEM results. Therefore, it is 
confirmed that the present shear-lag analysis can 
appropriately give a valid stress states under cyclic 
loading even though it is distinctly simpler than the 
FEM analysis. In addition, the shear-lag analysis 
does not require such a great amount of time for 
calculation as FEM due to its simplification. Hence, 
we can know that the present shear-lag analysis can 
properly predict the stress states in and around the 
broken fibre under cyclic loading with much 
advantage in calculation time.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Comparison of the present shear-lag analysis 
(solid lines) and FEM (discrete points). The stress 
distributions are plotted as a function of distance 
from fibre break at 02.0c =ε  and 0c =ε  unloaded 
from 02.0c =ε .  
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4 Discussions 

 Fig.8 shows variation of the plastic shear 
strain at the interface, pγ∆ , against distance from 
the fibre-break point under the different cyclic 
loading.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8. Relationship between plastic shear strain 
range and distance from fibre-break point under two 
different cyclic loading 
 
From Fig.8, we can know that pγ∆  increases along 
with an increase of the maximum value of the 
applied strain, and pγ∆ is equal to zero under the 
cyclic loading between 01.0c =ε and 0c =ε . Besides, 
the region in which changing of the plastic shear 
strain occurs is identical to the reverse plastic region. 

Considering the fatigue equations of Coffin-
Manson type, interfacial debonding can occur in the 
vicinity of the fibre-break point by cyclic loading; in 
other words, the debonding will not initiate under 
the specific loading condition in which the reverse 
plastic region does not occur, such as the cyclic 
loading between 01.0c =ε and 0c =ε . Therefore, 
combination of the present model and the fatigue 
equations will enable us to predict initiation of the 
interfacial debonding by low cycle fatigue. In 
addition, experimental observation of the fiber-
matrix interface during SFC test under cyclic 
loading will be effective to prove the validity of the 
present model. 
5 Concluding Remarks 

In this paper, an elasto-plastic shear-lag 
analysis was developed to predict the stress 
distribution in and around a broken fibre under 
cyclic loading. J2 flow theory was employed as a 
constitutive equation of the matrix, and an 
incremental analysis was conducted. The present 

analysis turned out to be able to take an effect of the 
difference of the strain path into consideration. 
Moreover, the stress states obtained from the present 
model were significantly different from the results 
derived from the model applying the deformation 
theory. Comparison of the stress distributions with 
the FEM result was also conducted, and it was 
confirmed that the present model can appropriately 
predict the stress distributions in and around the 
broken fibre under cyclic loading. 
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Appendix A. Thickness of Interfacial Layer 

In this appendix, the thickness of the interfacial 
layer, h is derived as a function of radii of the fibre 
and matrix, a and b. The shear stress is assumed to 
be constant against the fibre radial direction in the 
present model, however in detail the shear stress is 
distributed along with the distance from the fibre-
matrix interface, r, and given as 
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Then, the value of h is obtained from the 
correspondence of the shear strain energy 
contribution between the simplified present model 
and the detailed model [6], i.e. 
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Substituting Eq.A1 into Eq.A3, h is obtained as 
follows: 
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Fig.A1 indicates the relationship between h/a and 
b/a. According to Fig.A1, the value of h is 
approximately equal to 2a when b is sufficiently 
large. Therefore, we use h=2a in the present model. 
 

0 2 0 4 0 6 0 8 0 1 0 00

1

2

3
 
 
 
 
 
 
 

h/
a 

 
 
 
 
 
 b/a 
 
Fig.A1. Variation of normalized thickness of 
interfacial layer against normalized radius of matrix 
obtained from Eq.A4 
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