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Abstract  

In this study, the off-axis elastic-viscoplasic 
and creep behaviors of plain-woven GFRP 
laminates are analyzed by using a homogenization 
theory. First, the point-symmetry of the internal 
structures of plain-woven laminates is utilized for 
the boundary condition of unit cell problems, 
reducing the domain of analysis to 1/4 and 1/8 for 
the in-phase and out-of-phase laminate 
configurations, respectively. The time-dependent 
homogenization theory is then developed for the 
reduced domain of analysis. Using the present 
method, the in-plane elastic-viscoplastic and creep 
deformations of plain-woven glass fiber/epoxy 
laminates are analyzed. Moreover, the in-plane 
uniaxial tensile tests of a plain-woven GFRP 
laminate at a constant strain rate are performed at a 
room temperature. It is thus shown that the present 
analysis successfully predicts the in-plane elastic-
viscoplastic behavior of plain-woven GFRP 
laminates. It is also shown that the laminates exhibit 
marked in-plane anisotropy with respect to the 
elastic-viscoplastic and creep behaviors. 
 
 
1 Introduction 

It is of great importance to analyze the 
mechanical properties of textile composites because 
of their wide use in major industrial sectors, such as 
aerospace, auto and marine industries (e.g., [1,2]). 
Especially, plain-woven laminates made of plain 
fabrics and polymer matrix materials are regarded as 
the most fundamental textile composites. Thus, 
many studies have focused on analytical or 
numerical approaches to predict the mechanical 
properties of plain-woven laminates [1]. Early works 
drew attention to the linear elastic properties of 
laminates (e.g., [3-5]). But, recently, more attention 

is paid to the nonlinear analysis of plain-woven 
laminates because laminates generally exhibit 
nonlinear behavior due to the inelastic deformation 
of matrix materials or the microscopic failures of 
fibers and matrix (e.g., [6-10]). 

To predict such nonlinear behavior of plain-
woven laminates, numerical approaches are 
advantageous because they have the capability of 
analyzing the microscopic distributions of stress and 
strain in laminates, i.e., microscopic information 
providing accurate nonlinear analysis in incremental 
form. The mathematical homogenization theory 
based on a unit cell problem [11-13] is one of the 
most useful theories for such numerical analysis of 
plain-woven laminates because the theory enables us 
to analyze the microscopic stress and strain 
distributions as well as the macroscopic behavior of 
laminates. The theory, therefore, has been already 
applied to the microscopic failure propagation 
analysis of plain-woven GFRP laminates subjected 
to in-plane on-axis load [8,14,15]. Another 
numerical approach, finite element analysis, was 
also successfully applied to the same kind of failure 
propagation analysis of plain-woven laminates 
[7,10,16,17]. 

In the previous papers [18,19], the authors 
have developed the homogenization theory for 
nonlinear time-dependent composites, which will be 
referred to as the time-dependent homogenization 
theory hereafter. The theory was then applied to 
analyzing the elastic-viscoplastic behavior of long 
fiber-reinforced laminates, and succeeded in 
predicting experimental results accurately [20,21]. 
Using the theory, therefore, we may be able to 
analyze the off-axis nonlinear time-dependent 
behavior of plain-woven laminates. Such an analysis, 
however, has been hardly reported so far. 

The present authors [21,22] further showed the 
following: If the internal structure of a composite 
has point-symmetry, the perturbed velocity field in 
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the composite also has point-symmetry. Using the 
point-symmetry of perturbed velocity field as a 
boundary condition of unit cell problems, we are 
able to reduce the domain of analysis, leading to 
considerable computational efficiency. In the 
homogenization analysis of plain-woven laminates, 
the internal structures of the laminates are generally 
assumed to have the point-symmetry as well as the 
Y-periodicity. Thus, the point-symmetric boundary 
condition can be introduced into the homogenization 
analysis of plain-woven laminates so that the domain 
of analysis can be reduced. But, so far, whole unit 
cells have been taken as the domain of analysis 
because of the restriction of the Y-periodic boundary 
condition [4,8,14,15]. 

In this study, we analyze the in-plane off-axis 
elastic-viscoplastic and creep deformations of plain-
woven GFRP laminates using the time-dependent 
homogenization theory. It is first shown that, 
assuming the in-phase and out-of-phase laminate 
configurations of plain fabrics in laminates, both the 
internal structures have point-symmetry. It is further 
shown that the use of point-symmetry as a boundary 
condition for boundary value problems allows part 

of the unit cells for the domain of analysis. The 
time-dependent homogenization theory is then 
reconstructed for the reduced domain of analysis. 
The present method is next applied to the analysis of 
the in-plane elastic-viscoplastic and creep behaviors 
of plain-woven GFRP laminates. Moreover, tensile 
tests of a plain-woven GFRP laminate at a constant 
strain rate are carried out to compare the results of 
experiments with those of the present analysis. 
 
2 Domain of Analysis 

In the homogenization analysis of plain-woven 
laminates, two patterns of laminate configurations of 
plain fabrics, i.e., the in-phase and out-of-phase 
laminate configurations, are generally employed as 
the internal structures of plain-woven laminates as 
mentioned in the previous section [4,8,14,15]. The 
in-phase laminate configuration has no offset of 
plain fabrics in the 1y - and 2y -directions (Fig. 1(a)), 
while the out-of-phase laminate configuration has 
the phase shift of plain fabrics by π  in the 1y - and 

2y -directions (Fig. 1(b)). According to the previous 
studies [4,8,14,15], the assumption of these laminate 
configurations provides fairly valid results, although 
the actual microstructures of plain-woven laminates 
are not perfectly periodic but random to a greater or 
less extent. In this section, therefore, we also take 
the two laminate configurations into consideration, 
and show that the plain-woven laminates with such 
configurations have point-symmetric internal 
structures. It is further shown that the point-
symmetry is able to be utilized as a boundary 
condition for boundary value problems so that we 
can reduce the domain of analysis. Incidentally, the 
influence of the misalignment of plain fabrics or the 
nesting of fiber bundles on the mechanical properties 
of plain-woven laminates can be found in the 
literature [17,23-25]. 

First, with an in-phase laminate configuration, 
a unit cell Y  of laminate is taken as shown by the 
dashed lines in Fig. 2(a). Now, we turn our attention 
to a part of Y , which is indicated by the solid lines 
in Fig. 2(a) and referred to as a basic cell A  
hereafter. A careful look at the figure reveals that the 
internal structure of laminate has point-symmetry 
with respect to the centers of lateral facets of A , 
which are denoted by the open circles in Fig. 2(a). 
The perturbed velocity in laminate, therefore, 
distributes point-symmetrically with respect to these 
points. By contrast, the perturbed velocity at the top 
and bottom facets of A  satisfies the Y -periodicity 
because the internal structure is periodic with respect Fig. 1. Two types of laminate configurations of 

plain fabrics; (a) in-phase, (b) out-of-phase. 
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to A  in the 3y -direction (stacking direction). The 
use of the point-symmetry and Y -periodicity of 
perturbed velocity as a boundary condition with our 
previous results [20-22] enables us to take A  as the 
domain of analysis and to derive the boundary value 
problems Eqs. 5 and 6 as shown in section 3. 

Next, with an out-of-phase laminate 
configuration, a unit cell Y  is taken as indicated by 
the dashed lines in Fig. 2(b). The unit cell has two 
times the volume of an in-phase laminate 
configuration, but the same basic cell A  is taken 
again as shown by the solid lines in Fig. 2(b). As 
indicated in the figure, the internal structure of 
laminate has the point-symmetry with respect to the 
centers of the top and bottom facets as well as lateral 
facets of A , i.e., the centers of all the boundary 
facets of A , which are denoted by the open circles 
in Fig. 2(b). Thus, the perturbed velocity in laminate 
distributes point-symmetrically with respect to these 
points. Employing the point-symmetric distribution 
of perturbed velocity as a boundary condition, we 
obtain the same boundary value problems Eqs. 5 and 
6 as for an in-phase laminate configuration. 

As mentioned above, we are able to derive the 
boundary value problems by taking the basic cell A  
as the domain of analysis for both the in-phase and 
out-of-phase laminate configurations. In 

consequence, compared with the case of using unit 
cells, the domain of analysis is reduced to 1/4 and 
1/8 for the in-phase and out-of-phase laminate 
configurations, respectively. The reduction of the 
domain of analysis leads to significantly less 
computational memory and time to solve the 
boundary value problems, which is of great use for 
the incremental analysis as dealt with in the present 
study.  
 
3 Homogenization Theory 

In this section, the homogenization theory of 
nonlinear time-dependent composites [18,19] is 
described by taking the basic cell A  as the domain 
of analysis. 

Let us consider that a plain-woven laminate is 
subjected to macroscopically uniform load and 
exhibits infinitesimal deformation both 
macroscopically and microscopically. The 
constituents of laminate are assumed to have elastic-
viscoplastic properties and obey the following 
constitutive equation: 

 ( )ij ijkl kl klcσ ε β= − , (1) 

where ijσ  and klε  indicate microscopic stress and 
strain rates, respectively, ijklc  and klβ  signify elastic 

Unit cell YBasic cell A

Warp
Weft
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1y
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Fig. 2. Unit cells Y and basic cells A of plain-woven laminates; (a) in-phase, (b) out-of-phase.
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stiffness and viscoplastic function, respectively, 
satisfying ijkl jikl ijlk klijc c c c= = =  and kl lkβ β= . Then, 
the evolution equation of microscopic stress ijσ , and 
the relationship between macroscopic stress rate ijΣ  
and strain rate klE  are derived as follows [18,19]: 

 ( ) ( ), ,
kl

ij ijpq pk ql p q kl ijkl kl k lc E cσ δ δ χ β ϕ= + − − , (2) 

 ( ) ( ), ,
kl

ij ijpq pk ql p q kl ijkl kl k lc E cΣ δ δ χ β ϕ= + − − ,(3) 

where ijδ  denotes Kronecker’s delta, ,( ) i  indicates 
the differentiation with respect to Cartesian 
coordinates iy  ( 1, 2, 3)i = , and  represents the 
volume average in A  as 

 1# #
| |

dA
A

= ∫A . (4) 

Here, | |A  stands for the volume of A . Moreover, 
kl
iχ  and iϕ  are the characteristic functions 

determined by solving the following boundary value 
problems: 

 , , ,
kl

ijpq p q i j ijkl i jA A
c dA c dAχ = −∫ ∫v v , (5) 

 , , ,ijpq p q i j ijkl i jA A
c dA c dAϕ β=∫ ∫ klv v , (6) 

where iv  denotes an arbitrary velocity field 
satisfying the point-symmetry with respect to the 
centers of boundary facets of A  or the Y -
periodicity. The above problems are solved using 
FEM with the following boundary condition: With 
the in-phase laminate configuration, the point-
symmetric condition with respect to the centers of 
lateral facets of A  and the Y -periodic condition 
with respect to the top and bottom facets of A  are 
imposed on kl

iχ  and iϕ . By contrast, with the out-
of-phase laminate configuration, the point-
symmetric condition with respect to the centers of 
all the boundary facets of A  is imposed on kl

iχ  and 
iϕ . 

 
4 Experimental Procedure 

To verify the present method, in-plane uniaxial 
tensile tests of a plain-woven GFRP laminate at a 
constant strain rate were carried out at a room 
temperature. As illustrated in Fig. 3, coupon 
specimens were cut out from the plain-woven glass 
fiber/epoxy laminate (1000 mm× 1000 mm, 10 plain 
fabrics stacked) manufactured by Nitto Shinko 
Corporation. Strain gauges and rectangular GFRP 
tabs were then attached on both sides of the 

specimens. Regarding θ  as the angle between the 
longitudinal direction (tensile direction) of 
specimens and the warp direction of plain fabrics, 
four kinds of θ  were considered, i.e., 

0 , 15 , 30 , 45θ = ° ° ° ° . The angle θ  will be referred 
to as an off-axis angle hereafter, and 0θ = °  means 
on-axis loading. The tensile tests were done by a 
closed-loop servohydraulic testing machine with a 
load/strain computer controller. Strain rate was 
detected by the crosshead of testing machine, and 
the machine was controlled so that the specimens 
could be elongated at the constant strain rate 5 110 s− − . 
It was confirmed by the strain gauges that the strain 
rate was kept precisely at 5 110 s− −  during the tests. 
 
5 Analysis Condition 

Using the present method, the in-plane elastic-
viscoplastic and creep deformations of plain-woven 
glass fiber/epoxy laminates were analyzed under the 
macroscopic plane stress condition. In this section, 
the condition of the present analysis is described. 
The analysis was performed using VT64 Opteron 
Workstation (AMD Opteron 1.6 GHz) produced by 
Visual Technology, Inc. 
5.1 Laminate Configuration and Loading 
Condition 

For the elastic-viscoplastic analysis, the plain-
woven GFRP laminates were assumed to have the 

Fig. 3. Shape of specimens with dimensions in mm.
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in-phase or out-of-phase laminate configuration. The 
loading condition is the same as the experiment: The 
laminates were subjected to in-plane uniaxial load 
and elongated at the constant strain rate 5 110 s− − . 
Four kinds of off-axis angles, i.e., 

0 , 15 , 30 , 45θ = ° ° ° ° , were considered. While, for 
the creep analysis, the laminates were assumed to 
have the in-phase laminate configuration, and 
subjected to a constant creep stress (80MPa) at the 
same four kinds of off-axis angles as in the elastic-
viscoplastic analysis, i.e., 0 , 15 , 30 , 45θ = ° ° ° ° . 
5.2 Basic Cell 

In order to determine the geometry of basic cell, 
the microstructures of plain-woven GFRP laminate 
such as wavelength, shape and size of fiber bundles 
and volume fraction of fibers were investigated by 
the microscope observation of eight arbitrary aspects 
of the laminate from which the specimens had been 
cut out. Based on the average values of 
measurements, the basic cell was determined as 
illustrated in Fig. 4, and discretized into finite 
elements using eight-node isoparametric elements 
(1,624 elements, 1,995 nodes). This finite element 
mesh of basic cell corresponds to the meshes of unit 
cells with 6,496 and 12,992 elements for the in-
phase and out-of-phase laminate configurations, 
respectively. The results of the present analysis were 
demonstrated to coincide with those of the analysis 

in which the basic cell was divided into 3,083 
elements. 
5.3 Material Properties 

Fiber bundles were regarded as glass 
fiber/epoxy unidirectional composites and as linear 
elastic materials. The material properties of fiber 
bundles were calculated using the homogenization 
theory [11-13] on the assumption that the fiber 
volume fraction was 75 % in accordance with the 
microscope observation and that the bundles had a 
hexagonal fiber array. The elastic properties of glass 
fibers and epoxy used in the calculation are listed in 
Table 1. By contrast, the matrix (epoxy) was 
regarded as an isotropic elastic-viscoplastic material 
and to obey the following constitutive equation: 

 
( )0

1 3
2

n

eq ijpm m
ij ij kk ij p

m m eq

s
E E g

σν ν
ε σ σ δ ε

σε

 +
 = − +
  

,(7) 

where mE , mν  and n  signify material constants, 
( )pg ε  stands for the hardening function depending 

on equivalent viscoplastic strain pε , 0
pε  indicates 

reference strain rate, ijs  denotes deviatoric part of 
ijσ , and ( ) 1 2

3 2eq ij ijs sσ  =   . Incidentally, no 
failure was assumed to occur in the glass fibers and 
epoxy. 

To identify the material constants and 
hardening function in Eq. 7, the tensile tests of plain-
woven GFRP laminate were conducted with three 
kinds of strain rates. In the tests, 45°  specimens 
were used because the viscoplastic behavior of 
epoxy matrix could be observed most clearly [20]. 
The relations between macroscopic stress θΣ  and 
strain Eθ  obtained from the tests are plotted in Fig. 
5. The material constants and hardening function 
were then determined as shown in Table 1 so that 
the results of analysis in the case of 45θ = °  (in-
phase laminate configuration) could reproduce the 
experimental data as accurately as possible. 
Incidentally, the above constitutive equation of 

Fig. 4. Basic cell and finite element mesh; (a) 
full view with dimensions in mm, (b) fiber 

bundles in basic cell. 
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Table 1. Material constants. 
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epoxy based on isotropic hardening is valid as far as 
monotonic loading is concerned [20,21]. 
 

6 Results of Analysis 

6.1 Elastic-Viscoplastic Analysis 

6.1.1 Macroscopic Behavior 

The macroscopic stress-strain relations 
obtained from the present analysis and the tensile 
tests are shown in Fig. 6. The upper limits of strain, 
i.e., about 0.01 for 0θ = °  and 0.02 for 

15 , 30 , 45θ = ° ° ° , are taken to be relatively low 
compared with the fracture strains of specimens so 
that the influence of microscopic failures of fibers 
and matrix can be regarded as negligible. First, as 
seen from the experimental results indicated by the 
open circles in the figure, the almost linear behavior 
of plain-woven GFRP laminate is observed in the 
case of the on-axis loading ( 0θ = ° ). By contrast, 
with off-axis loading, i.e., 15 , 30 , 45θ = ° ° ° , the 
laminate exhibits considerable nonlinearity caused 
by the viscoplasticity of the matrix material. The 
viscoplastic flow stress suddenly decreases as θ  
increases, showing the marked in-plane anisotropy 
of laminate [6,8]. Comparing such experimental data 
with the results of the present analysis indicated by 
the lines in Fig. 6, it is found that the present method 
is successful in predicting the macroscopic behavior 
of plain-woven GFRP laminate. 

Next, we compare the results of in-phase 
laminate configuration (solid lines) with those of the 
out-of-phase one (dashed lines). As seen from Fig. 6, 
the differences between both the results are not 

observed in the elastic but rather in the viscoplastic 
region; the differences of viscoplastic flow stresses 
reach 5~15% at 0.01Eθ = . A closer look at the 
figure reveals that, with on-axis loading ( 0θ = ° ), 
the flow stress of the out-of-phase laminate 
configuration is higher than that of the in-phase one, 
whereas in off-axis loading ( 15 , 30 , 45θ = ° ° ° ), the 
relation is reversed, an issue to be discussed in more 
detail in the next section. It is thus shown that the 
laminate configurations of plain fabrics affect the 
viscoplastic, not the elastic, behavior of plain-woven 
GFRP laminates. Moreover, the laminate 
configurations of plain fabrics reportedly affected 
the microscopic failure behavior of plain-woven 
laminates subjected to in-plane on-axis load 
[14,17,24]. 
6.1.2 Microscopic Behavior 

To determine why the flow stress varied 
depending on the laminate configurations, we first 
examined the deformations of a cross section of the 
basic cell and the distributions of microscopic 
equivalent stress in the case of 0θ = °  (Fig. 7). In the 
figure, the displacement is magnified 10 times. In 
the in-phase laminate configuration, the laminate 
exhibits marked out-of-plane deformation [17], 
whereas such out-of-plane deformation disappears 
with the out-of-phase laminate configuration 
because of the symmetry of internal structure, 
resulting in a large interaction between adjacent 
warps. The interaction, moreover, causes more stress 
in the warp of the out-of-phase laminate 
configuration higher than the in-phase one as shown 
in Fig. 7. In consequence, the viscoplastic flow 

Fig. 5. Macroscopic tensile curves of plain-woven 
GFRP laminate with 45°  off-axis angle at constant 

strain rates. 

5 -110  s−

7 -110  s−

45θ =

3 -110  sEθ
−=

Fig. 6. Macroscopic stress versus strain relations of 
plain-woven GFRP laminates at 5 110 sEθ

− −= . 
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stress of the out-of-phase laminate configuration 
became higher than that in the in-phase one as 
mentioned in the previous section (see Fig. 6). 

Next, we discuss the distributions of resultant 
shear stress at the top facet of the basic cell in the 
case of 45θ = °  (Fig. 8). In the figure, the 
magnitudes of vectors signify 2 2 1 2

23 31[( ) ( ) ]σ σ+ . As 
seen from Fig. 8(a), considerable shear stress takes 
place in the case of the in-phase laminate 
configuration because the adjacent warp and weft 
rotate in opposite directions, respectively, due to the 
45°  off-axis loading (Fig. 9(a)). By contrast, in the 
case of the out-of-phase laminate configuration, such 
shear stress is hardly observed (Fig. 8(b)) because 
the adjacent warps rotate in the same direction (Fig. 
9(b)). As a result, the viscoplastic flow stress of the 
in-phase laminate configuration became higher than 
that of the out-of-phase one as shown in Fig. 6. The 
same tendency was found at the bottom facet of the 
basic cell, where there was the remarkable shear 
stress of the in-phase laminate configuration and 
little shear stress of the out-of-phase one. 
6.2 Creep Analysis 

Figure 10 shows the macroscopic creep 
curves of the plain-woven GFRP laminates at a 
constant creep stress, 80MPa, with four kinds of 
off-axis angles, 0 , 15 , 30 , 45θ = ° ° ° ° . First, it is 
seen form the figure that creep strain is hardly 
observed at 0θ = °  (on-axis loading). Similarly, 
considerably small creep strain occurs at 15θ = ° . 

But, with 30θ = ° , the creep strain suddenly 
increases and reaches more than five times the creep 
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Fig. 7. Distributions of equivalent stress in basic 
cells at 0.01Eθ =  ( 0θ = ° ); (a) in-phase, (b) out-

of- phase. 

Fig. 8. Distributions of resultant shear stress 
2 2 1 2

23 31[( ) ( ) ]σ σ+  on top facets of basic cells at 
0.02Eθ =  ( 45θ = ° ); (a) in-phase, (b) out-of- phase.

Fig. 9. Rotation of fiber bundles around top facets of 
basic cells under off-axis loading; (a) in-phase, (b) 

out-of-phase. 
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strain for 15θ = ° . The creep strain further increases 
at 45θ = ° , and becomes over twice higher than that 
at 30θ = ° . These results suggest that the plain-
woven GFRP laminates have marked in-plane 
anisotropy with respect to macroscopic creep 
behavior. 
 
7 Conclusions 

In this study, first, the basic cell was 
introduced into the homogenization analysis of 
plain-woven laminates as the domain of analysis by 
utilizing the point-symmetry of internal structures of 
laminates with the in- and out-of-phase laminate 
configurations. The basic cell enabled us to reduce 
the domain of analysis to 1/4 and 1/8 with respect to 
the in- and out-of-phase laminate configurations, 
respectively, in comparison with the case of using 
unit cells. Next, the time-dependent homogenization 
theory was reconstructed for the basic cell. The 
present method was then applied to the in-plane 
elastic-viscoplastic and creep analysis of plain-
woven GFRP laminates. Moreover, the uniaxial 
tensile tests of a plain-woven GFRP laminate at a 
constant strain rate were carried out at a room 
temperature. It was thus demonstrated that the 
experimental results were accurately predicted by 
the present analysis. It is also shown that the plain-
woven GFRP laminates exhibit marked in-plane 
anisotropy with respect to the elastic-viscoplastic 
and creep behaviors. 
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