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Abstract  

The design for a self-twisting composite marine 
propeller is optimized using a genetic algorithm 
(GA). The objective is to optimize the efficiency of 
the composite marine propeller for many inflow 
velocities, an objective unattainable for rigid 
propellers, and possible only due to the material 
properties of the self-twisting propeller. Parameters 
to be optimized are the orientation angles of the 
fibers in each layer. A generic GA is modified to 
include a binary-tree memory and local 
improvement procedures. The GA is also modified to 
interface with fluid mechanics solvers and ABAQUS. 
To test the efficacy of a simplified model, two 
optimizations are performed, one for a simple beam 
model, and another for the full-fledged propeller 
model, and these results are compared. Overall, the 
results for the optimization of the propeller show a 
significant increase in efficiency for a range of 
operating conditions. 
 
 
1 Introduction 

One of the difficulties in designing a marine 
propeller is that the optimal shape of the propeller 
changes with the inflow velocity, and thus propeller 
design often requires a propeller that is optimized 
for only a small range of inflow velocities and works 
sub-optimally over a larger range of inflow 
velocities. This paper proposes that the loss of 
optimality assumed by this approach can be reduced 
by optimizing for a self-twisting composite laminate 
propeller whose shape contorts for different inflow 
velocities. By optimizing the material configuration 
of the propeller in such a way that the contortions of 
the propeller work to maximize efficiency, the 
propeller can approach optimality for an entire 
spectrum of operating velocities. 

The objective is to optimize the efficiency of 
the composite marine propeller across all possible 
operating conditions, determined by the advance 
coefficient J. Parameters to be optimized include the 
orientation angles of the fibers in each layer 
(discrete variables due to manufacturing 
constraints). In order to calculate the efficiency of a 
composite marine propellers given these parameters, 
a coupled boundary element (BEM) and finite 
element (FEM) approach is used to predict the 
performance of self-twisting composite propellers in 
time-dependent flows [1,2]. The coupled algorithm 
is able to model complex cavitation patterns on both 
sides of the blade, and compute the unsteady 
hydrodynamic load, stress distributions, deflection 
patterns, and modal characteristics. Both because the 
coupled algorithm requires a significant amount of 
computation time (c. 15 minutes), and due to the fact 
that the parameters are discrete, special care must be 
given to the choice of the optimization algorithm. 

The proposed optimization algorithm is a 
modified genetic algorithm (GA). Genetic 
algorithms are a subset of stochastic optimization 
methods that are modeled after the process of natural 
selection [3]. Because of the expensive 
computational times involved in finding the 
objective function value, several improvements are 
made to the GA. A generic GA is modified to 
include both a binary tree memory, which cuts down 
on the number of function evaluations, and local 
improvement, a method that locally alters 
individuals in the GA by estimating the local 
behavior, and making the requisite adjustments 
without further function evaluations [4,5]. Finally, 
the GA is modified to interact with the coupled 
BEM/FEM algorithm. 

Before optimizing the self-twisting composite 
propeller with the GA, several test cases are 
considered to study the affect of the modifications to 
the GA on the performance of the algorithm, and to 
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investigate the feasibility of performing the 
optimization on simpler structures and applying the 
results to the more complex structure of the 
propeller. A composite laminate cantilevered plate 
under a uniform bending stress is chosen as a test 
case, and is found to be a fairly good model of the 
much more complex propeller. 
1.1 Background on Propeller Optimization 

Previous work on optimization of propeller structure 
has involved the continuous optimization of the 
physical parameters of the propeller. Khot and 
Zweber optimized the structure of a composite wing 
with respect to the thicknesses of the layers with 
fixed orientation angles using gradient methods [6]. 
Cho and Lee looked at the optimal shape of an air 
propeller by optimizing the twist angle distribution 
with the span twist angle distributions and spanwise 
chord length distributions acting as the design 
variables, utilizing gradient methods with penalty 
functions [7]. Lee and Lin investigated the 
possibility of maximizing the efficiency of 
composite propellers using genetic algorithms, with 
mixed results [8]. 
 

 
Fig. 1. The material structure 

2 Optimization 

2.1 Formulation 
The objective of the optimization is to 

maximize the efficiency of the propeller across 
several inflow velocities, by finding the optimal 
sequence of fiber orientation angles in a composite 
self-twisting marine propeller. The structure of 
composite laminate material is shown in Fig. 1. It 
consists of 10 layers, with symmetry across the 
center line. The base propeller geometry is that of 
propeller 5474 [1,2], and the material used is a 
graphite epoxy. 

Due to manufacturing constraints, the 
orientation fiber angles can only take on a fixed set 
of values. Because of this, the problem has a 
constrained discrete domain: 

{ }90,75,60,45,30,15,0,15−=iθ  i=1…5 (1) 

2.2 Objective Function  
Although the ultimate objective of the 

optimization to is to maximize the efficiency of the 
propeller, the process for calculating the efficiency 
for a candidate process design is complex, and has 
not yet been automated. However, the efficiency of a 
propeller operating at a specific condition (defined 
by the advance coefficient J) is dependent on the 
pitch angle of the propeller (φ) operating at that 
advance coefficient. In fact, the analytically optimal 
efficiency for a propeller for each value of J 
corresponds to an optimal pitch angle at that value of 
J. The plots in Fig. 2 show this calculated set of 
optimal efficiencies and optimal pitch angles. 

These same figures show the limitations of a 
rigid propeller design; because a rigid propeller 
maintains a constant pitch angle, independent of the 
advance coefficient, it can achieve maximum 
efficiency for only one specific value of the advance 
coefficient. The advance coefficient itself is a 
function of the advance speed, or inflow velocity, 
(V), the rotational speed (n), and the diameter of the 
propeller (D). 

nD
VJ =  (2) 

For rigid propellers, the propeller is designed to 
work optimally for a specific design advance 
coefficient, and there is a small range of inflow 
velocities where the propeller is optimal. However, 
larger deviations from design conditions result in 
sub-optimal efficiency.   

This loss of efficiency could be overcome by a 
propeller that could change pitch angles according to 
changes in inflow velocity. Because self-twisting 
propellers deform in response to changes in inflow 
velocity, they are not constrained to a single pitch 
angle and can approach this optimal set of pitch 
angles. Thus, the optimization problem is formulated 
as the minimization of the total distance between the 
optimal theoretical pitch angles and the pitch angles 
predicted for a self-twisting propeller. 

This can further be simplified since it is 
sufficient to only maximize twist in a candidate 
propeller design, as any increase in twist will 
increase the slope of the φ-J curve (Fig 2b), hence 
approaching the set of pitch angles that maximizes 
the efficiency for all inflow velocities.  
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Fig. 2. The efficiency (a) for a rigid propeller is 
optimal for only one value of J because it has a 

constant pitch angle (b) that can match the optimal 
pitch angle at only one value of the advance 

coefficient 
 
 

Thus, the maximization problem can be written 
as the maximization of the twist as a function of the 
orientation angles: 

( )θϕ
θ

r
max  (3) 

However, increasing the twist reduces the 
bending stiffness of the propeller. To limit the extent 
of this undesirable outcome, a constraint must be 
introduced:  

( ) αθ
≥

maxk
k
r

 
(4) 

Here, k is the bending stiffness of the candidate 
propeller design, kmax denotes the maximum bending 
stiffness achievable for the material, and α is 
between 0 and 1. In the optimization runs described 
here, α is set to 0.5, corresponding to maintaining at 
least 50% of the maximum bending stiffness. In 
addition, in order to limit the chance of delamination 
failure, a constraint is implemented to limit the 
number of consecutive layers (m) sharing the same 
fiber orientation angle: 

( ) maxmm ≤θ
r

 (5) 

The maximum number of consecutive layers 
with the same fiber orientation is set to 2. Finally, 
the constraints are incorporated into the original 
maximization problem, 
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(6) 

Here, λ1 and λ2 are parameters that determine 
the severity of the penalty functions, and are 1 and 0, 
respectively, if the constraints are not violated. 
When the constraints are violated, λ1 < 1 and λ2 > 0. 
2.3 Optimization Algorithm 

Genetic algorithms [3], first developed at the 
University of Michigan by John Holland, are a 
subset of stochastic optimization methods. Genetic 
algorithms are specifically modeled after the process 
of natural selection, a process that itself is a 
stochastic form of optimization (over genes in this 
case). Natural selection guarantees that out of a 
population that is constantly varying through genetic 
mutations, the most-fit individuals have a higher 
chance of reproduction, and are therefore more 
likely to pass on their genes to the next generation. 
Genetic algorithms copy this type of evolutionary 
pressure, but instead of working with individuals 
differentiated by genes, they guide the evolution of 
populations of individuals that represent possible 
solutions to an optimization problem. Each 
individual is simply a collection of parameters that 
defines a certain point in the optimization domain, 
and these parameters are encoded essentially as 
binary chromosomes that can mimic real 
chromosomal operations such as mutation and cross-
over. 
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Genetic algorithms begin by creating an initial 
population of random individuals, each representing 
a possible solution as a set of parameters. They then 
assign each individual a fitness, which is a measure 
of how well the particular set of parameters satisfies 
the objective function, with a higher fitness 
corresponding to a higher objective value. In order 
to model the process of natural selection, the genetic 
algorithm must make sure that the individuals that 
are most fit have the highest chance of reproducing 
and having children in the next population. Each 
subsequent population is determined by pairing off 
individuals to mate and have children, and the exact 
mechanism that chooses the mates varies. It can 
either be as simple as making the chance of having 
children proportional to the relative fitness of an 
individual, or can involve individuals competing for 
mates in a tournament where a higher fitness means 
a higher probability of winning. Regardless of the 
exact mechanism, the most-fit individuals have a 
higher chance of mating, and hence a higher chance 
of passing on their beneficial genes. Two individuals 
have children by simulating crossing-over, which is 
the process by which chromosomes exchange genes 
in real-world genetics. In genetic algorithms, a 
cross-over signifies that each child's chromosomes 
consist of a continuous series of a random number of 
bits from the father, with the remainder coming from 
the mother. Also, there exists a probability that a 
child may have a mutation in its genetic code, which 
is modeled by reversing one bit in a chromosome. 
This adds further randomness to a genetic algorithm, 
and prevents the algorithm from being trapped in a 
globally non-optimal local maximum. 

The process of mate selection, crossing-over, 
and mutation is repeated for each new generation, 
and with time each population has more and more 
highly-fit individuals, and the process halts after a 
certain amount of generations, with the process 
hopefully having found the global optimum in the 
form of the most-fit individual over-all. 

2.2.1 Memory  
As the genetic algorithm progresses, various 

individuals in different generations begin to appear 
repeatedly, especially as the algorithm is beginning 
to converge to its final optimum. This is particularly 
relevant for optimization problems with discrete 
domains (as in the case of the problem at hand), as 
the likelihood of reappearing individuals is larger 
than for problems with continuous domains. 
Normally, the genetic algorithm does not account for 
repeated individuals across generations and 
evaluates the same individuals each time, which 

leads to inefficiencies and a slower process. To 
avoid these unnecessary redundancies, genetic 
algorithms have been augmented with binary tree 
memories [5]. The memory holds the fitness value 
for each individual encountered, effectively pairing 
each orientation angle combination with a fitness 
value.  

A binary tree, a self-referential structure, is 
suited as a memory system as it provides quick 
insert and search capabilities. The tree is constructed 
by recursively entering new entries (the orientation 
angles coupled with the fitness) using the principle 
that all the branches to the left of a node are smaller 
than its value, and all the branches to the right are 
larger than its value. In the case of a set of 
orientation angles, the method, in determining 
whether a value is smaller or larger, first looks at the 
first orientation angle and then the next orientation 
angle. The search function is also recursive, and 
returns the required data (the fitness value) once it 
has found a matching node. 

2.2.2 Local Improvement  
Local improvement is a method by which one 

can speed up a genetic algorithm without requiring 
more function evaluations. The idea underlying local 
improvement is to optimize each individual for each 
generation by making slight alterations (the idea of 
"local" improvement) and estimating which slight 
alteration will produce the local optimum on the 
basis of regression analysis. However, it is difficult 
to estimate what affect slight alterations will have on 
sets of discrete variables, and two distinct methods 
have been developed to address this challenge. 

The first method depends on the calculation of 
a secondary continuous variable unique to each set 
of discrete variables that are correlated to fitness, 
and which can aid in the estimation of fitness for 
new designs. Kogiso et al., for example, calculated 
the bending lamination parameters W1

* and W2
*for 

each individual and stored these in the binary-tree 
memory [4]. For local improvement, the algorithm 
perturbs each individual by making every possible 
swap of two orientation angles. The algorithm then 
looks up the five "closest" individuals to the 
individual that is to be optimized (in the W1

* and W2
* 

plane), and fits a curve to the relationship between 
the secondary variables and fitness. Now, all that is 
left is to calculate W1

* and W2
* for each new "altered" 

individual and estimate its new fitness value. By this 
process, it is possible to estimate which of the 
altered individuals is the best improvement over the 
"nominal" design. This new individual then replaces 
the nominal design in the breeding process of the  
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genetic algorithm, and ensures that the genetic 
algorithm advances without new and expensive 
function evaluations. 

The other method is to fit a curve to the 
discrete set of orientation angles instead of fitting a 
curve to secondary variables. Lin and Lee showed 
that regression analysis with various trigonometric 
functions can successfully approximate the response 
surface of composite laminated structures [9]. Later, 
they showed that this model can be used as a local 
improvement procedure when optimizing over 
orientation angles [10]. Their algorithm runs a 
regression analysis on the previous individuals, and 
finds the estimated fitness for locally perturbed 
individuals, replacing the worst individual in a 
generation with the best perturbed individual, whose 
fitness is exactly calculated.  
2.4 Implementation 

A generic FORTRAN GA [11] is modified to 
include a binary tree memory and a local 
improvement scheme that attempts to predict 
optimal swaps based on secondary variables. It is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
also modified to interact with a coupled BEM/FEM 
solver [1,2]. Fig 3 shows the overall structure of the 
genetic algorithm.  

The optimization is performed in two stages, 
both sharing the same material design of Fig. 1 and 
the same objective function. However, the first stage 
involves the calculation of the twisting rate for a 
simple cantilevered beam, for which the 
computationally expensive BEM/FEM solver is not 
used. Instead, a relatively simple beam model based 
on classical composite plate theory is used to find 
the twisting rate of the cantilevered beam, in the 
hope that there is some correspondence between the 
material performance in the simple cantilevered 
beam, and the much more complex propeller. 

This model test case also allows for the 
tweaking of the genetic algorithm to judge and 
evaluate its performance, and to find the optimal 
values for the parameters controlling the genetic 
algorithm, something that would be wasteful to do 
on the GA executing the coupled BEM/FEM 
evaluations. 

Fig. 3. A Genetic Algorithm with Memory and Local Improvement 
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The second stage is the full GA, making use of 
the accurate twist calculations coming from the 
BEM/FEM solver. This optimization run is the same 
as the tweaked model test case optimization run, 
with the exception that now, the twist values are 
obtained for the actual propeller design.  
3 Results  

3.1 Beam Code Run  

The convergence plot for the beam code 
optimization run is shown in Fig 4. The GA 
convergences after about 60 generations, and the 
final optimal configuration angles (in degrees) are 
found to be:  

θ=15/15/0/0/90 (7) 

 
Fig. 4. Convergence of the genetic algorithm for 

simple beam code case 

 
Fig. 5. Convergence of the genetic algorithm with 

the BEM/FEM solver 

Notably, both the bending stiffness and number 
of consecutive orientation angle constraints are 
binding. Because of the symmetry, no non-
consecutive layers exist. Similarly, the bending 
stiffness ratio of the optimal solution is 0.51, only 
slightly exceeding the minimal required. When the 
algorithm is allowed to run without the bending 
constraints, it can be seen that the optimal twist with 
the bending constraints is only c. 40% of the twist 
occurring without the bending constraints. However, 
the decrease in efficiency due to the number of 
consecutive orientation angles is less significant. 

Another important insight from the beam-code 
run is that local improvement provides only minimal 
enhancement to the algorithm, speeding up 
convergence in only select runs, suggesting that this 
sort of “guided” approach fails when the secondary 
variables are only moderately linked to the 
objective; due to poor performance of local 
improvement in testing beam-code runs, it is not 
used in the runs utilizing the BEM/FEM solver to 
calculate twist. However, local improvement could 
potentially be useful when directly optimizing the 
efficiency of the propeller, using twist as a 
predictive secondary variable. 
3.2 BEM/FEM Run  

While the beam-code optimization run lasts 
only a few seconds, the full BEM/FEM run for the 
self-twisting propeller lasts around 50 hours of CPU 
time. The convergence plot for the algorithm is 
shown in Fig 5, and the optimal configuration is 
remarkably close to the one found in the primary test 
run: 

θ=15/15/0/0/30 (8) 

The algorithm follows a slightly different path 
than the one for the beam code, despite having the 
same algorithm parameters. The steeper rate of 
descent, and quicker leveling-off are evidence of a 
smaller pool of feasible configurations (that satisfy 
the constraints), suggesting that the bending 
constraints, although the same, are tighter in the case 
of the realistic propeller. 

Given the optimal configuration determined by 
the GA coupled with the BEM/FEM process, a no-
load propeller is designed with this material 
configuration, using the procedure outlined in [12]. 
The result of the design process yields the propeller 
shown in Fig. 6, in which the undeformed geometry 
corresponds to the designed no-load geometry, and 
the deformed geometry corresponds to the shape of 
the propeller when in operation. 
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Fig. 6. The geometry of the new self-twisting 

propeller 
 
The pitch angles for this optimized self-

twisting propeller (Fig. 7) bridge the gap between 
the rigid propeller and the theoretical optimal, with 
the resultant increases in efficiency (Fig. 8). Overall, 
the self-twisting propeller shows significant 
efficiency gains ranging from 1 to 7 percentage 
points. 
4 Conclusion 

A genetic algorithm used to optimize the 
material fiber orientations of a 10-layered symmetric 
composite laminate propeller to maximize twist, 
calculated with a coupled BEM/FEM solver, 
proposes a new design for a self-twisting composite 
marine propeller that shows efficiency 
improvements over a rigid propeller for several 
distinct operating conditions. 

However, for composite materials with more 
fiber layers, even an optimization algorithm like the 
GA would be prohibitively computationally 
expensive. Encouragingly, the same genetic 
algorithm, when calculating twist for a simplified 
beam model (instead of the BEM/FEM propeller 
model), yields results not much different from the 
results using the more expensive calculations. This 
suggests that the genetic algorithm utilizing the 
beam code can be used instead of the fuller 
BEM/FEM variant in more complex cases without 
much loss in optimality. Alternately, the results of 
the genetic algorithm using the simpler twist 
calculations could provide a good initial starting 
point (population) for a genetic algorithm (or any  

 
Fig. 7. Pitch angles for the new self-twisting 

propeller design 

 
Fig. 8. Efficiency of the new self-twisting propeller 

design 
 
 
other optimization algorithm) implementing the 
more accurate, but slower, twist calculations. 

Constraints on both the number of consecutive 
layers and the bending stiffness limit the efficiency 
of the self-twisting propeller, although the bending 
stiffness constraint is much more limiting. This 
places an importance on material choice. Materials 
with strong twisting abilities that do not imply 
significant losses of bending stiffness and strength 
would decrease the effect of this constraint, and 
further increase the efficiency gains of the self-
twisting composite propeller. 
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