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Abstract  

The effect of anisotropy on the natural 
frequencies and modes shapes of laminated 
composite shells of revolution is studied by a semi-
analytical solution method which exploits the 
combination of the numerical integration technique, 
and a modified frequency trial method. The 
governing shell of revolution equations comprise the 
full anisotropic form of the constitutive relations, 
including first order transverse shear deformation, 
and all components of translatory and rotary inertia. 
To study the coupled effect of anisotropy, geometry 
and boundary conditions on the vibration 
characteristics of anisotropic shells of revolution, 
numerical results are obtained for different shell 
geometries with different boundary conditions. 
Emphasis is placed on the effect of fibre orientation 
angle, stacking sequence, and coupling stiffness 
coefficients on the natural frequencies and modes 
shapes of anisotropic shells of revolution. 
 
 

1 Introduction 

Laminated composite shell structures are 
finding ever increasing application areas in many 
engineering disciplines due to their superior strength 
to weight, stiffness to weight ratio and corrosion 
resistant properties, among others, compared to 
structures made of metallic isotropic materials. 
Several solution strategies have been used for the 
vibration analysis of laminated composite shells of 
revolution. The most commonly used approach is 
based on the representation of the shell variables by 
a Fourier series in the circumferential coordinate, 
combined with the use of a numerical discretization 
technique such as finite elements, or numerical 
integration in the meridional direction. The main 
emphasis of most of the past studies has 
concentrated more on the solution methodology used 
in the vibration analysis of anisotropic shells of 

revolution, rather than a comprehensive study of the 
effect of anisotropic nature of the shell wall on the 
free vibration characteristics [1-5].  

The main objective of the present paper is to 
study the effect of anisotropy on the natural 
frequencies and mode shapes of shells of revolution. 
The semi-analytical method of solution which is 
used in this study is utilizes the multisegment 
numerical integration technique for the solution of 
free vibration problem of anisotropic shells of 
revolution through the use of finite exponential 
Fourier transform of the fundamental shell 
equations. Solution procedure is based on a modified 
frequency trial method [6], which processes on the 
numerically integrated transformed fundamental 
system of equations of anisotropic shells of 
revolution. The governing equations of include first 
order transverse shear deformation, and all 
components of translatory and rotary inertia.  

To understand the coupled effect of anisotropy, 
geometry and boundary conditions on the vibration 
characteristics of anisotropic shells of revolution, 
numerical results are obtained for different shell 
geometries with different boundary conditions, and 
for different vibration modes. The results focus on 
the effect of fiber orientation angle, stacking 
sequence, and coupling stiffness coefficients on the 
natural frequencies and mode shapes of 
macroscopically anisotropic shells of revolution. 
Relations are established with regard to the 
combined effect of stiffness coefficients of the 
anisotropic shells of revolution and dominant strain 
energy contributions at particular vibration modes, 
on the natural frequencies.  

2 Governing Equations 

In the present study, the shell of revolution 
equations, governing the vibration of anisotropic 
shells of revolutions, consist of strain displacement 
relations of the Reissner-Naghdi shell theory [7], 
dynamic equilibrium equations[6,8] and full 
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macroscopically anisotropic form of the constitutive 
relations [9]. For laminated composite structures, 
full anisotropic form of the constitutive equations 
relating the stress resultants to mid surface strains 

( 000 ,, φθθθφφ γεε ) and curvatures ( φθθθφφ κκκ ,, ) are 

given in matrix form by Eq. 1.  
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In addition, transverse shear stress resultants are 

related to transverse shear strains ( 00, φθ γγ ) by Eq. 2. 
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For a doubly curved shell of revolution, φ and 
θ  represent the curvilinear coordinates along the 
meridian and tangential directions of the shell of 
revolution, respectively. In Eqs. 1 and 2, the 
coefficients given in the square matrix expressions 
represent the stiffness coefficients of the shell wall, 
which is built up from individual layers of arbitrary 
fiber orientation, and they are defined in the usual 
manner [9].  

In the derivation process of dynamic 
equilibrium equations, application of Hamilton’s 
principle also generates conditions on the boundary 
displacements, and boundary stress resultants which 
are applied at the constant meridional coordinate 
(φ =constant) of a shell of revolution. For the free 
vibration problem, boundary conditions are given by 
setting one of the variables given inside the 
parenthesis of the shell variable pairs in Eqs. 3 and 4 
to zero [10].  

  0),(),,(),,( 000 =wQuNuN φθφθφφφ
 

(3) 

0),(),,( =θφθφφφ ββ MM  (4) 

In Eqs. 3 and 4, 000 ,, wuu θφ represent the mid 

surface displacements at the reference surface of the 
shell along the meridian, circumferential, and 
transverse directions, respectively. φβ and 

θβ represent the rotations of a transverse normal 
about θ  and φ  curvilinear coordinates, respectively. 

In order to apply the numerical integration 
technique to the solution of the vibration problem, 
strain displacement relations, dynamic equilibrium 
equations, and anisotropic constitutive relations are 
brought into a fundamental system of equations 
which can be expressed as in Eq. 5. 
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In Eq. 5 { }ψ  is a vector representing the 
fundamental shell variables, which enter into the 
appropriate boundary conditions at a rotationally 
symmetric edge of the rotationally symmetric shell. 
Therefore, vector { }ψ consists of the variables given 
by Eqs. 3 and 4. It is customary to organize the 
fundamental shell variable vector such that the first 
five elements of the vector are the displacements and 
rotations, and the last five elements are the stress 
resultants. The right hand side of Eq.5 is a function 
of the fundamental shell variables, first and second 
θ  derivatives of some of the fundamental shell 
variables, stiffness coefficients of the anisotropic 
shell wall, and two radii of curvature of the doubly 
curved shell of revolution. The system of equations 
given by Eq.5 is derived by the complex 
manipulation of the strain displacement relations, 
dynamic equilibrium equations, and full anisotropic 
form of the constitutive relations. For anisotropic 
shells of revolution, the derivation of the 
fundamental system of equations in the form of Eq.5 
is explained in detail in Ref. 6. 

For anisotropic shells of revolution, which are 
characterized by the constitutive relations given by 
Eqs. 1 and 2, the existence of full coupling stiffness 
coefficients precludes the uncoupling of 
fundamental system of shell equations, describing 
the symmetric and antisymmetric responses with 
respect to circumferential coordinate, by the 
classical sine or cosine Fourier decomposition of the 
fundamental shell variables. Therefore, to 
accomplish the uncoupling of the circumferential 
coordinate from the fundamental system of 
equations, each fundamental variable is expanded in 
complex Fourier series as shown in Eq. 6. 
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In Eq.6, it is assumed that for the free vibration 
analysis, the time dependence of each quantity in 



 

3  

                                       EFFECT OF ANISOTROPY ON THE VIBRATION 
       CHARACTERISTICS OF COMPOSITE SHELLS OF REVOLUTION 

synchronous motion appears in a factor tie ω , where 
ω is the natural frequency. Back transformation of 
the fundamental variable vector is achieved by Eq.7. 
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It is clear form Eq. 6 that the application of 
finite exponential Fourier transform, results in 
doubling of the number of fundamental variables. 
Thus, finite exponential Fourier transform of Eq. 5 
yields a system of twenty ordinary differential 
equations in terms of the transformed fundamental 
shell variables, and this system of equations is given 
in Eq. 8.  
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In Eq. 8, n is the circumferential wave number, and 
the fundamental variable vector is partitioned such 
that the first half consists of cosine and sine parts of 
the displacements and rotation of the reference 
surface of the shell of revolution, and the second 
half consists of the cosine and sine parts of the stress 
resultants. The elements of the coefficient matrix K  
for anisotropic shells of revolution are given in 
Ref.6. Similarly, application of the finite exponential 
Fourier transform to Eqs. 3 and 4, results in doubling 
the number of boundary conditions, which are 
defined in terms of cosine and sine parts of the 
fundamental shell variables. Eq. 8, together with the 
boundary conditions expressed in terms of 
transformed fundamental variables, specified at the 
two boundary edges of an anisotropic shell of 
revolution, form an eigenvalue problem for the 
eigenvectors which are the transformed 
displacements, rotations, and stress resultants. 

3 Method of Solution 

The solution for the natural frequencies and 
variation of shell variables along the meridian of the 
shell of revolution is accomplished by employing the 
multisegment numerical integration technique [11]. 
In the multisegment numerical integration technique, 
the shell is divided into M number of segments in 
the meridional direction, and the solution to Eq. 8 
can be written as in Eq. 9. 

    { } [ ] { })(),,()( iinT φψφωφψ =   ),...2,1( Mi =  (9) 

In Eq. 9, transfer matrices iT  are obtained from the 
initial value problems defined in each segment i by 
Eq. 10 subject to initial condition given by Eq. 11. 
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d
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                   [ ] [ ]InT ii =),,( φω  (11) 

In the present study, the initial value problems 
defined by Eqs. 10 and 11 are solved by the 
numerical integration of the equations by the IMSL 
subroutine DIVPAG. Continuity requirements of the 
fundamental variables at the end points of the shell 
segments ),...2,1( Mi = , lead from Eq. 9 to the 
partitioned matrix equation given by Eq. 12. 
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For computational ease, the rows of the 

fundamental variable vector ψ at both ends of the 
shell, 1φ  and 1+Mφ , are adjusted such that for the 
anisotropic shell of revolution, the first 10 elements 
of { })( 1φψ and the last 10 elements of { })( 1+Mφψ  are 
the prescribed boundary conditions. In the 
following, to keep the uniformity of the notation 
used for the partitioned fundamental variable vector, 
the boundary conditions are also represented by the 
same vector notation defined by Eq. 8. Therefore, at 
both ends of the shell of revolution, the boundary 
conditions are expressed by Eq. 13. 
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The solution for the eigenvalue problem 
requires the writing out of matrix equations, Eq. 12, 
in each interval i separately, and bringing the whole 
equation set into an upper diagonal matrix equation 
by Gauss elimination. 
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In Eq. 14, the (10X10) matrices 1E and 1C are 
evaluated successively from Eqs. 15 and 16. 

)2(
11 TE =  (15) 
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1
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)4(
11
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For the remaining shell segments ),...,3,2( Mi = , the 

(10X10) matrices iE and iC are evaluated 
successively from Eqs. 17 and 18. 

1
1

)1()2( −
−+= iiii CTTE  (17) 
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Natural frequencies are then determined by 
requiring the non-trivial solution of the last row of 
Eq. 14, and setting the determinant of the coefficient 
matrix to zero. 

        0
1010

=
xMC  (19) 

Assuming that a particular natural frequency is 
determined from Eq. 19, then from the last row of 

Eq. 14, )( 1
)1(

+Mφψ is determined up to an arbitrary 
constant. The remaining unknown fundamental 
variables at each ends of the shell segments can then 
be calculated successively from the rows of Eq. 14. 

Natural frequencies are calculated by tracing the 
determinant of the characteristic matrixMC for 
incremented values of the frequency estimates 
within a frequency range of interest. When the finite 
exponential Fourier transform of the fundamental 
shell equations was used, it was observed that 
determinant of the characteristic matrix does not 
change sign, but rather it is always positive, and 
vanishes at the natural frequency [6]. For a typical 
shell of revolution, the determinant of the 
characteristic matrix versus the non-dimensional 
frequency is plotted in Fig. 1, in a range where a 
natural frequency actually resides. 
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Fig. 1. Variation of the characteristic determinant 

 
To extract the natural frequency, a slope 

change detection algorithm in combination with 
inverse interpolations was devised. The method 
essentially relies on checking the slope change of the 
determinant of the characteristic matrix, and 
detecting an interval where a natural frequency 
resides. Once an interval is determined, by 
successive inverse interpolations natural frequency 
is extracted. 

4 Study of the Effect of Anisotropy on the 
Vibration Characteristics                

4.1 Effect of Fibre Orientation Angle 

By implementing the semi-analytical method 
of solution described, a sample study is performed 
for the effect of fibre orientation angle on the natural 
frequencies of a truncated spherical shell which is 
clamped at the inner rim and free at the outer edge. 
The truncated sphere is assumed to have a radius of 
1 m, and overall thickness of 5.76 mm, and the shell 
is assumed to be clamped at the meridian angle of 

o10=φ , and free at the outer edge, o70=φ . 
Material is taken as high modulus graphite/epoxy 
with 1E =207.35GPa, 2E =5.18GPa, 12ν =0.25, 

11.3231312 === GGG GPa, ρ =1524.47 kg m-3. 
Shell wall is constructed from 48 layers each having 
the same fibre orientation angleα , and ply thickness 
of 0.12 mm. Fig. 2 shows the variation of the lowest 
scaled non-dimensional natural frequency (W*100) 
with respect to fibre orientation angle, corresponding 
to different circumferential modes.  
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Fig. 2. Variation of natural frequency with respect     
            to fibre orientation; clamped-free case 
 
In Fig. 1 non dimensional frequency W is calculated 
according to Eq. 20. 
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            W ( ) 3
1 10*Eh ρω=  (20) 

In Eq. 20, h represents the thickness of the 
shell wall. 

Fig.3 gives the variation of the natural 
frequency of the same truncated spherical shell 
which is clamped at both inner and outer rims.  
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Fig. 3. Variation of natural frequency with respect     
            to fibre orientation; clamped-clamped case 

 
Figs. 2 and 3 reveal that, eventually at higher 

circumferential modes, shells with layers having 
circumferentially dominant fibre orientation start to 
have higher natural frequencies. This behaviour is 
attributed to the dominance of bending strain energy 
contribution to the total strain energy at high 
circumferential wave numbers [12]. At high 
circumferential wave numbers, circumferential slices 
taken from the shell of revolution resemble to a 
beam with n2  nodal points along the circumference. 
Therefore, circumferential bending stiffness 
coefficients ( 22D ), become the dominant factor 
affecting the natural frequencies. However, it is 
noticed that shell geometry and boundary conditions 
also have significant effect on variation of the 
natural frequencies with the fibre orientation angle. 
It is seen that, compared to the clamped-free 
spherical shell, natural frequencies of clamped-
clamped spherical shell increase with fibre 
orientation angle at considerably higher 
circumferential wave numbers. For the clamped-
clamped shell, the effect of higher meridional 
bending stiffness )( 11D  achieved with meridional 
fibre orientation, on the natural frequencies is 
apparently far more significant compared to the 
effect of higher circumferential bending 
stiffness )( 22D  achieved with circumferential fibre 
orientation, on the natural frequencies. For instance, 

for the clamped-free case, natural frequencies start 
to increase with the fibre orientation angle after 
n =2. However, for the spherical shell with both 
edges clamped, for circumferential wave numbers 
less than 11, natural frequencies decrease with 
increasing fibre orientation angle. At low 
circumferential wave numbers, compared to bending 
strain energy the extensional strain energy is more 
dominant in its contribution to the total strain energy 
[12]. Therefore, at low circumferential wave 
numbers, relative differences among the extensional 
stiffness coefficients of the laminates with different 
fibre orientations also start to be effective in the 
variation of the natural frequency with the 
orientation angle. 

Figs. 4 and 5 show effect of fibre orientation 
on the fundamental lateral displacement mode 
shapes for the spherical shell, which is clamped at 
both edges, for the circumferential mode n =1. 

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0.00 0.25 0.50 0.75 1.00

Normalized meridional arclength

w
0

 
  Fig. 4. Fundamental lateral displacement mode    
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  Fig. 5. Fundamental lateral displacement mode    

             shape( )0w ; n =1, =α 90o 
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It is noticed that for the 0o fibre orientation case, 
there is a single nodal point along the meridian of 
the shell, but for the 90o fibre orientation case, node 
disappears. It should be noted that for the 0o and 90o 
fibre orientation cases, the sine part of the lateral 
displacement vanishes and the cosine part represents 
the actual physical lateral displacement. 

4.2 Effect of Stacking Sequence 

The effect of stacking sequence on the natural 
frequencies of laminated composite shells is 
demonstrated for a cylindrical shell (radius: 0.21m, 
length: 1.2 m), which is clamped at both edges. 
Same high modulus graphite/epoxy material, as in 
spherical shell case, is assumed to be used for the 
ply material, with the same ply thickness of 0.12 
mm. Six different symmetric lay-ups, listed in Table 
1, are used to build the cylindrical shell wall. Lay-
ups are built from different combinations of 0o, ±45o, 
and 90o plies. 
 

Table 1.  List of lay-ups 

Lay-up  Stacking sequence  

1 [ 0
2

0
2

0
2 45/90/0 ± ]s 

2 [ 0
2

0
2

0
2 90/45/0 ± ]s 

3 [ 0
2

0
2

0
2 90/0/45± ]s 

4 [ 0
2

0
2

0
2 0/90/45± ]s 

5 [ 0
2

0
2

0
2 0/45/90 ± ]s 

6 [ 0
2

0
2

0
2 45/0/90 ± ]s 

 

 Bending-stretching coupling coefficients (ijB ) 

of all lay-ups vanish, because all six lay-ups, given 
in Table 1, have symmetric stacking sequence 
arrangement with respect to mid plane of the shell 
wall. Extensional stiffness coefficients (ijA ) of the 

six different lay-ups are identical, because 
extensional stiffness coefficients do not depend on 
the ply arrangement within the shell wall. Similarly, 
transverse shear stiffness coefficients of the lay-ups 
are also identical, because shear moduli of the ply 
material are same, and the use of 0o, ±45o, and 90o 
orientations result in identical transverse shear 
stiffness coefficients. On the other hand, bending 
stiffness coefficients ( ijD ) depend on the ply 

arrangement through the thickness of the shell wall. 
For the six different lay-ups, Fig.6 compares the 

scaled non-dimensional bending stiffness 
coefficients which are calculated by Eq. 21. 

        Dij )6,2,1,(10*)/( 33
1 == jihEDij

 (21) 
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      Fig.6. Bending stiffness coefficients (Table 1) 

It should be noted that since the extensional 
and transverse shear stiffness coefficients of the lay-
ups are identical, the differences in the natural 
frequencies will be governed by the differences in 
the bending stiffness coefficients of these lay-ups. 
Fig. 7 gives the variation of the scaled, non-
dimensional fundamental natural frequencies of the 
lay-ups listed in Table 1, with respect to 
circumferential wave number. 
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   Fig.7. Fundamental natural frequencies of the six  
             different lay-ups given in Table 5 
 

It is noticed that at low circumferential wave 
numbers, natural frequencies of shells with different 
lay-ups are almost identical. The differences in the 
natural frequencies among the lay-ups increase at 
higher circumferential wave numbers. This 
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behaviour is again attributed to the fact that, at high 
circumferential wave numbers, bending strain 
energy constitutes the major portion of the total 
strain energy, whereas at low circumferential wave 
numbers extensional strain energy is more dominant 
[12]. As a result of this behaviour, the total strain 
energy shows a somewhat parabolic form. 
Therefore, variation of natural frequencies of shells 
of revolution with the circumferential wave number 
also shows a parabolic form. Since the extensional 
stiffness coefficients (Aij) of the six lay-ups are 
identical, at low circumferential wave numbers 
natural frequencies are very close to each other, such 
that in Fig. 7 no difference can be observed. 
However, as the circumferential wave number is 
increased, the differences in the bending stiffness 
coefficients start to have effect on the natural 
frequencies of the shell with different lay-ups. It is 
seen that bending stiffness coefficient in the 
circumferential direction (D22) predominantly 
governs the magnitude of the natural frequency at 
high circumferential wave numbers. Fig. 6 shows 
that shell with lay-up 5 has the highest bending 
stiffness coefficient in the circumferential direction 
(D22), due to the placement of 90o and 45o layers in 
the outer side of the shell wall. Therefore, at higher 
circumferential wave numbers, lay-up 5 has the 
highest natural frequencies. On the other hand, shell 
with lay-up 2 has the highest bending stiffness along 
the meridian of the shell (D11), and lowest 
circumferential bending stiffness (D22), due to the 
placement of 90o and 45o layers inside and 0o layers 
outside the shell wall. Therefore, as the 
circumferential wave number is increased, the 
largest difference in the natural frequencies occurs 
between shells with lay-ups 5 and 2. However, it 
should be expected that at higher axial modes, the 
difference between the natural frequencies of shells 
with lay-up 5 and lay-up 2 should gradually 
diminish. This is because, at higher axial modes, the 
number of nodal points along the meridian of the 
shell also increases, and bending stiffness along the 
shell axis (D11) also starts to play an important role 
in governing the magnitude of the natural frequency 
of the shell. 

4.3 Effect of Coupling Stiffness Coefficients 

The effect of coupling stiffness coefficients on 
the natural frequencies is studied for a laminated 
cylindrical shell (radius: 0.21m, length: 1.2 m), 
which is simply supported at both edges. Table 2 
gives the three different stacking sequences, which 
are used as test cases. Shell wall is assumed to be 

formed from 0.2 mm thick plies, and ply angles are 
selected such that the three lay-ups formed 
symmetric (Ls), antisymmetric (La),  and 
unsymmetric (Lu), shell walls with respect to the 
middle surface of the shell. 

  
Table 2. List of lay-ups 

Lay-up Stacking sequence  
Ls [0o/30o/90o/60o]symmetric 
La    [0o/30o/90o/60o]antisymmetric 
Lu [0o/30o/90o/60o/0o/30o/90o/60o] 

 
For the unsymmetric lay-up case, in order to 

have all coupling stiffness coefficients non-zero, 
highly orthotropic Boron/Epoxy is taken as the ply 
material with 1E =224GPa, 2E =12.7GPa, 

12ν =0.256, == 1312 GG 4.42 GPa, =23G 2.48 GPa 
ρ =2527 kg m-3. 

Figs. 8, 9, 10 and 11 compare the scaled non-
dimensional extensional, transverse shear, bending 
stretching coupling, and bending stiffness 
coefficients of the three lay-ups listed in Table 2, 
respectively. Stiffness coefficients are made 
dimensionless, and scaled according to the following 
scheme. 

 Aij = )6,2,1,(100*))/(( 1 =jihEAij
 

(8) 

 Asij = )5,4,(100*))/(( 1 =jihEAsij  (9) 

   Bij = )6,2,1,(100*))/(( 2
1 =jihEBij  (10) 

   Dij = )6,2,1,(100*))/(( 3
1 =jihEDij  (11) 
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Fig.8. Extensional stiffness coefficients 
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     Fig.9. Transverse shear stiffness coefficients 
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 Fig.10. Bending stretching coupling stiffness terms         
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  Fig.11. Bending stiffness coefficients        

Fig. 12 shows the variation of the natural 
frequency with respect to circumferential wave 
number of the shells with symmetric, antisymmetric 
and unsymmetric lay-ups.  
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    Fig.12. Fundamental frequencies of the cylinders  
                 composed of lay-ups given in Table 2 

 
It is noticed that at high circumferential wave 

numbers, shell with unsymmetric lay-up has higher 
natural frequencies compared to the shells with 
symmetric and antisymmetric lay-ups. This 
difference can be explained when the bending 
stiffness coefficients of the three lay-ups are 
compared with each other in Fig. 11. It is seen that 
the shell with the unsymmetric lay-up has the 
highest circumferential bending stiffness D22, and 
therefore due to the dominance of bending strain 
energy at high circumferential wave numbers, shell 
with unsymmetric lay-up attained the highest natural 
frequency. However, this conclusion can not be 
generalized, because by placing the plies with 
circumferential fibre orientation on the outer side of 
the shell wall, circumferential bending stiffness of 
the symmetric and antisymmetric lay-ups can be 
made very close to the circumferential bending 
stiffness of the unsymmetric lay-up. In that case, 
natural frequencies of the shells with three lay-ups 
would be very close to each other at high 
circumferential wave numbers. It should also be 
noticed that for the unsymmetric lay-up, due to the 
existence of coupling terms, shell is more flexible. 
However, it is seen that the bending stiffness 
coefficient D22 is more effective on the natural 
frequencies compared to the effect of coupling terms 
and as a result, natural frequencies increase. 

Fig. 12 shows that at the low circumferential 
wave numbers, shell with antisymmetric lay-up has 
higher natural frequencies compared to shells with 
symmetric and unsymmetric lay-ups. Fig. 8 shows 
that all three lay-ups have the same extensional 
stiffness coefficients except for the absence of 
stretching-shearing coupling coefficients in the 
antisymmetric lay-up. Because of the dominance of 
extensional strain energy at low circumferential 
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wave numbers, natural frequencies are mainly 
governed by the extensional stiffness coefficients. 
Therefore, at low circumferential wave numbers, the 
increase in the natural frequencies of the shell with 
antisymmetric lay-up is attributed to the absence of 
the stretching-shearing coupling (A16,A26). 
Coupling terms effectively make the shell more 
flexible, and they cause decrease in the natural 
frequencies.  

The dominance of extensional strain energy at 
low circumferential wave numbers can also be 
verified, when the natural frequencies of shells with 
symmetric and unsymmetric lay-ups are compared 
with each other in Fig. 12. Fig. 12 shows that at low 
circumferential wave numbers, natural frequencies 
of shells with symmetric and unsymmetric lay-ups 
are almost equal to each other. On the other hand, 
Figs. 8, 9, 10 and 11 show that these lay-ups have 
different bending-stretching coupling coefficients, 
and bending stiffness coefficients, but they have the 
same extensional stiffness coefficients. Since the 
extensional stiffness coefficients predominantly 
govern the extensional strain energy, frequency 
calculations also verify the dominance of 
extensional strain energy at low circumferential 
wave numbers. 

Further study of the effect of coupling stiffness 
coefficients on the natural frequencies is 
demonstrated for the cylindrical shell with the 
unsymmetric lay-up given in Table 2. The natural 
frequencies of the cylinder with unsymmetric lay-up 
are compared with the natural frequencies of the 
cylinder with a hypothetical lay-up, in which all the 
coupling terms are made null. These coupling terms 
include all bending-stretching coupling stiffness 
coefficients Bij, extensional and bending stiffness 
coefficients with subscripts 16, 26, and transverse 
shear stiffness coefficient with subscript 45. When 
the coupling terms are omitted, the resulting shell 
equations become same as the orthotropic lay-up 
case, for which simpler solutions can be obtained. 
Fundamental natural frequencies of the cylinder 
composed of the unsymmetric lay-up, with and 
without coupling terms, are compared in Fig. 13 for 
different circumferential wave numbers. Numerical 
results are obtained for two cylinders, which are 
clamped and simply supported at both ends, 
respectively. 

Fig. 13 shows that when the coupling terms are 
omitted in the analysis, natural frequencies increase 
as expected. Although the difference between the 
natural frequencies is not very high, the higher 
difference encountered in the natural frequencies at 

low circumferential wave numbers can not be 
neglected in free vibration and dynamic loading 
problems.  
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Fig. 13. Effect of coupling terms on the frequencies:  
           CC: Clamped-clamped, SS: Simply supported 
 

 It should also be noted that at higher 
circumferential wave numbers, the effect of 
boundary conditions diminishes, and the natural 
frequencies get very close to each other.  This 
behaviour is also expected, because at high 
circumferential wave numbers, the total number of 
nodal points around the circumference of the shell is 
twice the circumferential wave number. Therefore, 
the shell actually can not feel the difference between 
the simply supported and clamped edge conditions. 

5 Conclusion 

The effect of anisotropy on the vibration 
characteristics of laminated composite shells of 
revolution is studied by a semi-analytical solution 
method, which exploits the combination of the 
numerical integration technique, and a modified 
frequency trial method. The fundamental system of 
shell of revolution equations are derived by utilizing 
the governing equations of anisotropic shells of 
revolution, including first order transverse shear 
deformation, and all components of translatory and 
rotary inertia. 

Numerical results are presented on the effect of 
fibre orientation angle, stacking sequence, and 
coupling stiffness coefficients on the natural 
frequencies and modes shapes of anisotropic shells 
of revolution. Results are obtained for different shell 
geometries with different boundary conditions to 
show the generality of the solution method. It has 
been observed that shell geometry and boundary 
conditions can have a significant impact on how the 
fibre orientation angle affects the stiffness of the 
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shell of revolution, thus the natural frequencies.  It is 
shown that at sufficiently high circumferential wave 
numbers, shells with layers having circumferential 
fibre orientation start to have higher natural 
frequencies irrespective of the boundary conditions 
imposed. 

Based on the results obtained in present study, it 
can be inferred that at the low circumferential 
modes, extensional stiffness coefficients govern the 
magnitude of the fundamental natural frequency, 
whereas at the higher circumferential wave numbers, 
bending stiffness coefficients become the 
dominating factor. This finding actually verifies the 
dominance of extensional strain energy at low 
circumferential wave numbers, and the dominance 
of bending strain energy at high circumferential 
wave numbers, as indicated by Arnold and 
Warburton [12].  Thus, for anisotropic shells of 
revolution with different shell wall lay-ups, it is 
possible to compare the natural frequencies by of the 
shells qualitatively, simply by comparing the 
stiffness coefficients for the particular 
circumferential wave number. The qualitative 
comparison can be very reliable at low and high 
circumferential wave numbers. Such a qualitative 
comparison may aid alternative lay-up design 
decisions to be made relatively easily and faster, for 
composite shells of revolution that are expected to 
be exposed to different dynamic load environment. 

Results of the present study also show that the 
coupling stiffness coefficients reduce the 
fundamental natural frequencies. This conclusion is 
expected because of the higher flexibility of the shell 
of revolution due to the coupling terms. In addition, 
it was also observed that the effect of coupling 
stiffness coefficients of anisotropic shells of 
revolution on the fundamental natural frequencies 
decrease at high circumferential wave numbers. 
Therefore, at high circumferential wave numbers, 
the use of orthotropic material models, which can be 
obtained by omitting the coupling stiffness 
coefficients of the anisotropic shell of revolution, 
can give very close results for the fundamental 
natural frequencies of anisotropic shells of 
revolution. However, at low circumferential wave 
numbers, coupling terms may have significant effect 
on the natural frequencies. Therefore, the effect of 
coupling stiffness coefficients on the fundamental 
natural frequencies can not be disregarded, for the 
free vibration and dynamic loading problems 
involving anisotropic shells of revolution. 
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