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Abstract

The effect of anisotropy on the natural
frequencies and modes shapes of laminated
composite shells of revolution is studied by a semi-
analytical solution method which exploits the
combination of the numerical integration technique,
and a modified frequency trial method. The
governing shell of revolution equations comprise the
full anisotropic form of the constitutive relations,
including first order transverse shear deformation,
and all components of translatory and rotary inertia.
To study the coupled effect of anisotropy, geometry
and boundary conditions on the vibration
characteristics of anisotropic shells of revolution,
numerical results are obtained for different shell
geometries with different boundary conditions.
Emphasis is placed on the effect of fibre orientation
angle, stacking sequence, and coupling stiffness
coefficients on the natural frequencies and modes
shapes of anisotropic shells of revolution.

1 Introduction

Laminated composite shell structures are
finding ever increasing application areas in many
engineering disciplines due to their superior gjten
to weight, stiffness to weight ratio and corrosion
resistant properties, among others, compared to
structures made of metallic isotropic materials.

Several solution strategies have been used for the

revolution, rather than a comprehensive study ef th
effect of anisotropic nature of the shell wall dwe t
free vibration characteristics [1-5].

The main objective of the present paper is to
study the effect of anisotropy on the natural
frequencies and mode shapes of shells of revolution
The semi-analytical method of solution which is
used in this study is utilizes the multisegment
numerical integration technique for the solution of
free vibration problem of anisotropic shells of
revolution through the use of finite exponential
Fourier transform of the fundamental shell
equations. Solution procedure is based on a madifie
frequency trial method [6], which processes on the
numerically integrated transformed fundamental
system of equations of anisotropic shells of
revolution. The governing equations of includetfirs
order transverse shear deformation, and all
components of translatory and rotary inertia.

To understand the coupled effect of anisotropy,
geometry and boundary conditions on the vibration
characteristics of anisotropic shells of revolution
numerical results are obtained for different shell
geometries with different boundary conditions, and
for different vibration modes. The results focus on
the effect of fiber orientation angle, stacking
sequence, and coupling stiffness coefficients @n th
natural frequencies and mode shapes of
macroscopically anisotropic shells of revolution.
Relations are established with regard to the
combined effect of stiffness coefficients of the

vibration analysis of laminated composite shells of anisotropic shells of revolution and dominant strai

revolution. The most commonly used approach is
based on the representation of the shell varidites
a Fourier series in the circumferential coordinate,
combined with the use of a numerical discretization
technique such as finite elements, or numerical
integration in the meridional direction. The main
emphasis of most of the past studies has
concentrated more on the solution methodology used
in the vibration analysis of anisotropic shells of

energy contributions at particular vibration modes,
on the natural frequencies.

2 Governing Equations

In the present study, the shell of revolution
equations, governing the vibration of anisotropic
shells of revolutions, consist of strain displacatne
relations of the Reissner-Naghdi shéieory [7],
dynamic equilibrium equations[6,8] and full
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macroscopically anisotropic form of the constitetiv. = 3, represent the rotations of a transverse normal

relations [9]. For laminated composite structures, anpoutd andg¢ curvilinear coordinates, respectively.
full anisotropic form of the constitutive equations In order to apply the numerical integration

relating the stress resultants to mid surface retrai technique to the solution of the vibration problem,

0 .0 .0 oo . ) o
(Egp €00, Vge) and curvatures Ky, kgg, Ky ) are strain displacement relations, dynamic equilibrium
given in matrix form by Eqg. 1. equations, and anisotropic constitutive relatiores a
brought into a fundamental system of equations
Ng| [A: Ay As B B B f%a which can be expressed as in Eq. 5.
Noo | |A2 Aoz A Bio By By || 60
0 0.t

Neo | _| A6 A6 Aes Bie Bas Beg Voo (1) {l//(g(o)}:{f(@g,t)} (5)

Mg| |Bia Bz Big D1 Dip Dig [|Kpy

Mao| |Biz Bz Bz D1z Dzp Do ||y, In Eq. 5{y} is a vector representing the

Meo| [Bis Bz Bes Dis D2s Des] Koo fundamental shell variablesyhich enter into the

appropriate boundary conditions at a rotationally
. symmetric edge of the rotationally symmetric shell.
In addition, transverse shear stress resultants areTherefore, vectofy} consists of the variables given

i 0 . .
related to transverse shear stram%(/(p) by Eq. 2. by Egs. 3 and 4. It is customary to organize the
fundamental shell variable vector such that thst fir
0 . :
Qg| [Asas Asss||Ve five elements of the vector are the displacemenmts a
Q[ | As Ass 0 2) rotations, and the last five elements are the stres
14 45 511V resultants. The right hand side of Eq.5 is a fumcti

, of the fundamental shell variables, first and secon

For a doubly curved shell of revolutiop.and @ derivatives of some of the fundamental shell
6 represent the curvilinear coordinates along the variables, stiffness coefficients of the anisoteopi
meridian and tangential directions of the shell of shell wall, and two radii of curvature of the doubl
revolution, respectively. In Egs. 1 and 2, the curved shell of revolution. The system of equations
coefficients given in the square matrix expressions given by Eq.5 is derived by the complex
represent the stiffness coefficients of the shellw  manipulation of the strain displacement relations,
which is built up from individual layers of arbitsa dynamic equilibrium equations, and full anisotropic
fiber orientation, and they are defined in the lsua form of the constitutive relations. For anisotropic
manner [9]. shells of revolution, the derivation of the

In the derivation process of dynamic fundamental system of equations in the form of Eq.5
equilibrium equations, application of Hamilton’s s explained in detail in Ref. 6.
principle also generates conditions on the boundary For anisotropic shells of revolution, which are
displacements, and boundary stress resultants whichcharacterized by the constitutive relations givgn b
are applied at the constant meridional coordinate Eqs. 1 and 2, the existence of full coupling séffa
(¢ =constant) of a shell of revolution. For the free coefficients precludes the uncoupling of
vibration problem, boundary conditions are given by fundamental system of shell equations, describing
setting one of the variables given inside the the symmetric and antisymmetric responses with
parenthesis of the shell variable pairs in Eqnd4 respect to circumferential coordinate, by the

to zero [10]. classical sine or cosine Fourier decompositiorhef t
fundamental shell variables. Therefore, to
(N Ug), (Ngg, U), (QpW°) =0 ©) accomplish the uncoupling of the circumferential

coordinate from the fundamental system of
equations, each fundamental variable is expanded in

(M. Bp). (M. Bg) =0 4 complex Fourier series as shown in Eq. 6.
0.0 .0 - 2 -ing
In Egs. 3 and 4u,,ug,W" represent the mid wn(@) = Iﬂ{l//(ag)}ezl,r; @} -ilns@  (6)
0

surface displacements at the reference surfadeeof t

shell along the meridian, circumferential, and |, gq6, it is assumed that for the free vibration
transverse  directions,  respectivelyS, and analysis, the time dependence of each quantity in
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synchronous motion appears in a faatlf, where
a is the natural frequency. Back transformation of
the fundamental variable vector is achieved by Eq.7

n- +oo

Wweoh="3 {wn(@}e?

n—- —o

(7)

It is clear form Eqg. 6 that the application of
finite exponential Fourier transform, results in
doubling of the number of fundamental variables.
Thus, finite exponential Fourier transform of Eq. 5
yields a system of twenty ordinary differential
equations in terms of the transformed fundamental
shell variables, and this system of equationsvsmgi
in Eq. 8.

@
—[K(n,w,@]{z (

(¢)} )

)

In Eqg. 8,nis the circumferential wave number, and
the fundamental variable vector is partitioned such
that the first half consists of cosine and sindspaf

the displacements and rotation of the reference
surface of the shell of revolution, and the second
half consists of the cosine and sine parts of ttess
resultants. The elements of the coefficient maktix
for anisotropic shells of revolution are given in
Ref.6. Similarly, application of the finite exportizh
Fourier transform to Egs. 3 and 4, results in diogpl
the number of boundary conditions, which are
defined in terms of cosine and sine parts of the
fundamental shell variables. Eg. 8, together wlith t
boundary conditions expressed in terms of
transformed fundamental variables, specified at the
two boundary edges of an anisotropic shell of
revolution, form an eigenvalue problem for the
eigenvectors which are the transformed
displacements, rotations, and stress resultants.

3 Method of Solution

The solution for the natural frequencies and
variation of shell variables along the meridiartto#
shell of revolution is accomplished by employing th
multisegment numerical integration technique [11].
In the multisegment numerical integration technjque
the shell is divided intav number of segments in
the meridional direction, and the solution to Eqg. 8
can be written as in Eq. 9.

w@l=fwoliv@)} (=12.M) (9)

In Eq. 9, transfer matriceg are obtained from the

initial value problems defined in each segmilny
Eg. 10 subject to initial condition given by Eq. 11

d%[T(n,wm)]i [KnwolTwdli (10)

[r(n e )] =[1] (11)

In the present study, the initial value problems
defined by Egs. 10 and 11 are solved by the
numerical integration of the equations by the IMSL
subroutine DIVPAG. Continuity requirements of the
fundamental variables at the end points of thel shel
segmentqi =12,..M) , lead from Eg. 9 to the

partitioned matrix equation given by Eq. 12.
o] i8] ]
w i+1 TI TI i+1 ‘// [

For computational ease, the rows of the
fundamental variable vectay at both ends of the

shell, ¢ and ¢, ,,, are adjusted such that for the

anisotropic shell of revolution, the first 10 elan®e
of {w(¢@)} and the last 10 elements {f(gy +1)} are

the prescribed boundary conditions. In the
following, to keep the uniformity of the notation
used for the partitioned fundamental variable vecto
the boundary conditions are also represented by the
same vector notation defined by Eq. 8. Therefare, a
both ends of the shell of revolution, the boundary
conditions are expressed by Eq. 13.

W@ =1e@@af=0 @3

The solution for the eigenvalue problem
requires the writing out of matrix equations, Ef, 1
in each interval separately, and bringing the whole
equation set into an upper diagonal matrix equation
by Gauss elimination.

B -0 0 @)
0 C -1 0 . 0| ¢gOeg
0
o0 C (70 a4
0 . . 0 Ey -l ¢g@ag
[0 . 0 0 Cwllg®@ma)

In Eq. 14, the (10X10) matrice&; and Cp are
evaluated successively from Egs. 15 and 16.

E =T® (15)



cy =T ¥EL (16)

For the remaining shell segmerfis= 23,...,M), the
(10X10) matrices E; and C; are evaluated
successively from Eqs. 17 and 18.

E=T@+10c? 17)

G = (Ti @, 1@ )Ei—l (18)

Natural frequencies are then determined by
requiring the non-trivial solution of the last ravf
Eqg. 14, and setting the determinant of the coedfici
matrix to zero

CM 1gx00 =0 (19)
Assuming that a particular natural frequency is
determined from Eqg. 19, then from the last row of

Eq. 14,09 (@) is determined up to an arbitrary

constant. The remaining unknown fundamental
variables at each ends of the shell segments ean th
be calculated successively from the rows of Eq. 14.
Natural frequencies are calculated by tracing the
determinant of the characteristic maty, for
incremented values of the frequen®stimates
within a frequency range of interest. When thetdini
exponential Fourier transform of the fundamental

ALTAN KAYRAN, E. Yavuzbalkan

To extract the natural frequency, a slope
change detection algorithm in combination with
inverse interpolations was devised. The method
essentially relies on checking the slope changheof
determinant of the characteristic matrix, and
detecting an interval where a natural frequency
resides. Once an interval is determined, by
successive inverse interpolations natural frequency
is extracted.

4 Study of the Effect of Anisotropy on the
Vibration Characteristics

4.1 Effect of Fibre Orientation Angle

By implementing the semi-analytical method
of solution described, a sample study is performed
for the effect of fibre orientation angle on theural
frequencies of a truncated spherical shell which is
clamped at the inner rim and free at the outer edge
The truncated sphere is assumed to have a radius of
1 m, and overall thickness of 5.76 mm, and thel shel
is assumed to be clamped at the meridian angle of

@=10° , and free at the outer edge=70° .
Material is taken as high modulus graphite/epoxy
with E; =207.35GPa,E, =5.18GPa, v;, =0.25,
G2 =G3=Gy3=311GPa, p =1524.47 kg mi.
Shell wall is constructed from 48 layers each hgvin
the same fibre orientation angie and ply thickness
of 0.12 mm. Fig. 2 shows the variation of the lowes

shell equations was used, it was observed that scaled non-dimensional natural frequency (W*100)

determinant of the characteristic matrix does not
change sign, but rather it is always positive, and
vanishes at the natural frequency [6]. For a typica
shell of revolution, the determinant of the
characteristic matrix versus the non-dimensional
frequency is plotted in Fig. 1, in a range where a
natural frequency actually resides.
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5.0E-16- m
]
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Non-dimensional frequency

Fig. 1. Variation of the characteristic determinant

with respect to fibre orientation angle, correspongd
to different circumferential modes.
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Fig. 2. Variation of natural frequency with respect
to fibre orientation; clamped-free case

In Fig. 1 non dimensional frequency W is calculated
according to Eqg. 20.
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W:(wh p/El)*103 (20)

In Eq. 20, hrepresents the thickness of the
shell wall.

Fig.3 gives the variation of the natural
frequency of the same truncated spherical shell
which is clamped at both inner and outer rims.

n=0 8—n=1 n=3 A—N=5
——n=7 ——nN=9 ——n=11 —8—n=13
215
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Fig. 3. Variation of natural frequency with respect
to fibre orientation; clamped-clampede

Figs. 2 and 3 reveal that, eventually at higher
circumferential modes, shells with layers having
circumferentially dominant fibre orientation staot
have higher natural frequencies. This behaviour is
attributed to the dominance of bending strain eperg
contribution to the total strain energy at high
circumferential wave numbers [12]. At high
circumferential wave numbers, circumferential sice
taken from the shell of revolution resemble to a
beam with2n nodal points along the circumference.
Therefore, circumferential bending  stiffness
coefficients (Dy» ), become the dominant factor

affecting the natural frequencies. However, it is
noticed that shell geometry and boundary conditions
also have significant effect on variation of the
natural frequencies with the fibre orientation @ngl

It is seen that, compared to the clamped-free
spherical shell, natural frequencies of clamped-
clamped spherical shell increase with fibre
orientation angle at considerably  higher
circumferential wave numbers. For the clamped-
clamped shell, the effect of higher meridional
bending stiffness(D;1) achieved with meridional

fibre orientation, on the natural frequencies is
apparently far more significant compared to the
effect of higher circumferential bending

stiffness(Dy,) achieved with circumferential fibre

orientation, on the natural frequencies. For instan

for the clamped-free case, natural frequencied star
to increase with the fibre orientation angle after
n=2. However, for the spherical shell with both
edges clamped, for circumferential wave numbers
less than 11, natural frequencies decrease with
increasing fibre orientation angle. At low
circumferential wave numbers, compared to bending
strain energy the extensional strain energy is more
dominant in its contribution to the total straireegy
[12]. Therefore, at low circumferential wave
numbers, relative differences among the extensional
stiffness coefficients of the laminates with diéet
fibre orientations also start to be effective ire th
variation of the natural frequency with the
orientation angle.

Figs. 4 and 5 show effect of fibre orientation
on the fundamental lateral displacement mode
shapes for the spherical shell, which is clamped at
both edges, for the circumferential model.
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Fig. 4. Fundamental lateral displacement mode
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Fig. 5. Fundamental lateral displacement mode
shape(wo); n=1, a =90



It is noticed that for the “Ofibre orientation case,
there is a single nodal point along the meridian of
the shell, but for the 9Gibre orientation case, node
disappears. It should be noted that for thar@d 90
fibre orientation cases, the sine part of the #ter
displacement vanishes and the cosine part repeesent
the actual physical lateral displacement.

4.2 Effect of Stacking Sequence

The effect of stacking sequence on the natural
frequencies of laminated composite shells is
demonstrated for a cylindrical shell (radius: 0.21m
length: 1.2 m), which is clamped at both edges.
Same high modulus graphite/epoxy material, as in
spherical shell case, is assumed to be used for the
ply material, with the same ply thickness of 0.12
mm. Six different symmetric lay-ups, listed in Tabl
1, are used to build the cylindrical shell wall.yta
ups are built from different combinations &f 8#45°,
and 90 plies.

Table 1. List of lay-ups

Lay-up Stacking sequence
1 [09 /909 /+ 4501
) [0 /245 19031
3 [+450 /09 /9001
4 [ 450 /909 /091
5 [909 /+ 459 /091
5 [903 /09 /+ 4501

Bending-stretching coupling coefficients;()

of all lay-ups vanish, because all six lay-ups,egiv

in Table 1, have symmetric stacking sequence
arrangement with respect to mid plane of the shell
wall. Extensional stiffness coefficients() of the

six different lay-ups are identical, because
extensional stiffness coefficients do not depend on
the ply arrangement within the shell wall. Simyarl
transverse shear stiffness coefficients of theulpy-
are also identical, because shear moduli of the ply
material are same, and the use {f#35°, and 90
orientations result in identical transverse shear
stiffness coefficients. On the other hand, bending
stiffness coefficients O;; ) depend on the ply

arrangement through the thickness of the shell.wall
For the six different lay-ups, Fig.6 compares the
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scaled non-dimensional bending stiffness
coefficients which are calculated by Eq. 21.
Dij = (Dj; / Eth%)*10° (i,j=126) (21)
D11 m D12 m D16 m D22 m D26 O D66
60 -
50
40 -
& 30-
20
o | Lkl
0 |
1 2 3 4 5 6
Lay-up

Fig.6. Bending stiffness coefficients (Talb)e

It should be noted that since the extensional
and transverse shear stiffness coefficients ofaje
ups are identical, the differences in the natural
frequencies will be governed by the differences in
the bending stiffness coefficients of these lay-ups
Fig. 7 gives the variation of the scaled, non-
dimensional fundamental natural frequencies of the
lay-ups listed in Table 1, with respect to
circumferential wave number.

—=—Llay-up1 —e—Llay-up 2
—A—lay-up 3 —s—lay-up 4
—e—lay-up5 —a—Llay-up6

2 3 4 5 6 7
Circumferential wave number

Fig.7. Fundamental natural frequencies of tke si
different lay-ups given in Table 5

It is noticed that at low circumferential wave
numbers, natural frequencies of shells with différe
lay-ups are almost identical. The differences ia th
natural frequencies among the lay-ups increase at
higher circumferential wave numbers. This

6
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behaviour is again attributed to the fact thahigh
circumferential wave numbers, bending strain
energy constitutes the major portion of the total
strain energy, whereas at low circumferential wave
numbers extensional strain energy is more dominant
[12]. As a result of this behaviour, the total stra
energy shows a somewhat parabolic form.
Therefore, variation of natural frequencies of kshel
of revolution with the circumferential wave number
also shows a parabolic form. Since the extensional
stiffness coefficients A;) of the six lay-ups are
identical, at low circumferential wave numbers
natural frequencies are very close to each otheh s
that in Fig. 7 no difference can be observed.
However, as the circumferential wave number is
increased, the differences in the bending stiffness
coefficients start to have effect on the natural
frequencies of the shell with different lay-upsidt
seen that bending stiffness coefficient in the
circumferential direction (D22) predominantly
governs the magnitude of the natural frequency at
high circumferential wave numbers. Fig. 6 shows
that shell with lay-up 5 has the highest bending
stiffness coefficient in the circumferential dinect
(D22), due to the placement of°@hd 45 layers in

the outer side of the shell wall. Therefore, athleig
circumferential wave numbers, lay-up 5 has the
highest natural frequencies. On the other hand| she
with lay-up 2 has the highest bending stiffnessiglo
the meridian of the shell (D11), and lowest
circumferential bending stiffness (D22), due to the
placement of 90and 48 layers inside and°Qayers
outside the shell wall. Therefore, as the
circumferential wave number is increased, the
largest difference in the natural frequencies agcur
between shells with lay-ups 5 and 2. However, it
should be expected that at higher axial modes, the
difference between the natural frequencies of shell
with lay-up 5 and lay-up 2 should gradually
diminish. This is because, at higher axial modess, t
number of nodal points along the meridian of the
shell also increases, and bending stiffness albag t
shell axis (D11) also starts to play an importaré r

in governing the magnitude of the natural frequency
of the shell.

4.3 Effect of Coupling Stiffness Coefficients

The effect of coupling stiffness coefficients on
the natural frequencies is studied for a laminated
cylindrical shell (radius: 0.21m, length: 1.2 m),
which is simply supported at both edges. Table 2
gives the three different stacking sequences, which

are used as test cases. Shell wall is assumed to be

formed from 0.2 mm thick plies, and ply angles are
selected such that the three lay-ups formed
symmetric [s), antisymmetric I(a), and
unsymmetric ICu), shell walls with respect to the
middle surface of the shell.

Table 2. List of lay-ups

Lay-up Stacking sequence
Ls [0°/30°/90°/6 0] symmetric
I—a [00/300/900/60)] antisymmetric
Lu [0%/30°/90°/60°/0°/30°/190°/6 (1)

For the unsymmetric lay-up case, in order to
have all coupling stiffness coefficients non-zero,
highly orthotropic Boron/Epoxy is taken as the ply
material with E; =224GPa, E, =12.7GPa,

V12 =0.256,G;2 =G 3=4.42 GPaGy3=2.48 GPa
0=2527 kg rit.

Figs. 8, 9, 10 and 11 compare the scaled non-
dimensional extensional, transverse shear, bending
stretching coupling, and bending stiffness
coefficients of the three lay-ups listed in Table 2
respectively. Stiffness coefficients are made
dimensionless, and scaled according to the follgwin
scheme.

Aij =(A;j I(Eh))*100 (i,j=126)  (8)
Asij = (As; /(Ejh))*100 (i,j=45)  (9)
Bij =(B; /(E;h?))*100 (i, j=126) (10)
Dij =(D;; /(§;h%)*100 (i,j=126) (11)
All mA12 mA16 mA22 mA26 OA66
50 q
40 -
_ 30 T
<
20 A
10 ~
: 1
Ls La Lu

Fig.8. Extensional stiffness coefficients
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Fig.9. Transverse shear stiffness coefficients

B11l m B12 mB16 m B22 m B26 00 B66
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3 .
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Fig.10. Bending stretching coupling stiffness term

D11 m D12 m D16 m D22 m D26 O D66
6_
4 -
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Fig.11. Bending stiffness coefficients

Fig. 12 shows the variation of the natural
frequency with respect to circumferential wave
number of the shells with symmetric, antisymmetric
and unsymmetric lay-ups.
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Fig.12. Fundamental frequencies of the cyliader
composed of lay-ups given in Table

It is noticed that at high circumferential wave
numbers, shell with unsymmetric lay-up has higher
natural frequencies compared to the shells with
symmetric and antisymmetric lay-ups. This
difference can be explained when the bending
stiffness coefficients of the three lay-ups are
compared with each other in Fig. 11. It is seen tha
the shell with the unsymmetric lay-up has the
highest circumferential bending stiffness D22, and
therefore due to the dominance of bending strain
energy at high circumferential wave numbers, shell
with unsymmetric lay-up attained the highest ndtura
frequency. However, this conclusion can not be
generalized, because by placing the plies with
circumferential fibre orientation on the outer safe
the shell wall, circumferential bending stiffnesk o
the symmetric and antisymmetric lay-ups can be
made very close to the circumferential bending
stiffness of the unsymmetric lay-up. In that case,
natural frequencies of the shells with three lag-up
would be very close to each other at high
circumferential wave numbers. It should also be
noticed that for the unsymmetric lay-up, due to the
existence of coupling terms, shell is more flexible
However, it is seen that the bending stiffness
coefficient D22 is more effective on the natural
frequencies compared to the effect of coupling serm
and as a result, natural frequencies increase.

Fig. 12 shows that at the low circumferential
wave numbers, shell with antisymmetric lay-up has
higher natural frequencies compared to shells with
symmetric and unsymmetric lay-ups. Fig. 8 shows
that all three lay-ups have the same extensional
stiffness coefficients except for the absence of
stretching-shearing coupling coefficients in the
antisymmetric lay-up. Because of the dominance of
extensional strain energy at low circumferential

8
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wave numbers, natural frequencies are mainly
governed by the extensional stiffness coefficients.
Therefore, at low circumferential wave numbers, the
increase in the natural frequencies of the shet wi
antisymmetric lay-up is attributed to the absente o
the stretching-shearing coupling (A16,A26).
Coupling terms effectively make the shell more
flexible, and they cause decrease in the natural
frequencies.

The dominance of extensional strain energy at
low circumferential wave numbers can also be
verified, when the natural frequencies of shellhwi
symmetric and unsymmetric lay-ups are compared
with each other in Fig. 12. Fig. 12 shows thaiat |
circumferential wave numbers, natural frequencies
of shells with symmetric and unsymmetric lay-ups
are almost equal to each other. On the other hand,
Figs. 8, 9, 10 and 11 show that these lay-ups have
different bending-stretching coupling coefficients,
and bending stiffness coefficients, but they hdnee t
same extensional stiffness coefficients. Since the
extensional stiffness coefficients predominantly
govern the extensional strain energy, frequency
calculations also verify the dominance of
extensional strain energy at low circumferential
wave numbers.

Further study of the effect of coupling stiffness
coefficients on the natural frequencies s
demonstrated for the cylindrical shell with the
unsymmetric lay-up given in Table 2. The natural
frequencies of the cylinder with unsymmetric lay-up
are compared with the natural frequencies of the
cylinder with a hypothetical lay-up, in which afie
coupling terms are made null. These coupling terms
include all bending-stretching coupling stiffness
coefficients Bij, extensional and bending stiffness
coefficients with subscripts 16, 26, and transverse
shear stiffness coefficient with subscript 45. When
the coupling terms are omitted, the resulting shell
equations become same as the orthotropic lay-up
case, for which simpler solutions can be obtained.
Fundamental natural frequencies of the cylinder
composed of the unsymmetric lay-up, with and
without coupling terms, are compared in Fig. 13 for
different circumferential wave numbers. Numerical
results are obtained for two cylinders, which are
clamped and simply supported at both ends,
respectively.

Fig. 13 shows that when the coupling terms are
omitted in the analysis, natural frequencies ingeea
as expected. Although the difference between the
natural frequencies is not very high, the higher
difference encountered in the natufi@quencies at

low circumferential wave numbers can not be
neglected in free vibration and dynamic loading
problems.

A CC-With couplingd CC-No coupling

15 ¢ SS-With coupling ¢ SS-No coupling
12
094 O
: | g 2
064 o
0.3 % mga®
. 5 @
0.0 T T T T T T T T 1
0O 1 2 3 4 5 6 7 8 9

Circumferential wave numbar

Fig. 13. Effect of coupling terms on the frequencie
CC: Clamped-clamped, SS: Simply suppbrte

It should also be noted that at higher
circumferential wave numbers, the effect of
boundary conditions diminishes, and the natural
frequencies get very close to each other. This
behaviour is also expected, because at high
circumferential wave numbers, the total number of
nodal points around the circumference of the skell
twice the circumferential wave number. Therefore,
the shell actually can not feel the difference lestw
the simply supported and clamped edge conditions.

5 Conclusion

The effect of anisotropy on the vibration
characteristics of laminated composite shells of
revolution is studied by a semi-analytical solution
method, which exploits the combination of the
numerical integration technique, and a modified
frequency trial method. The fundamental system of
shell of revolution equations are derived by utilig
the governing equations of anisotropic shells of
revolution, including first order transverse shear
deformation, and all components of translatory and
rotary inertia.

Numerical results are presented on the effect of
fibre orientation angle, stacking sequence, and
coupling stiffness coefficients on the natural
frequencies and modes shapes of anisotropic shells
of revolution. Results are obtained for differenelé
geometries with different boundary conditions to
show the generality of the solution method. It has
been observed that shell geometry and boundary
conditions can have a significant impact on how the
fibre orientation angle affects the stiffness oé th
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shell of revolution, thus the natural frequenciéiss
shown that at sufficiently high circumferential veav
numbers, shells with layers having circumferential
fibre orientation start to have higher natural
frequencies irrespective of the boundary conditions
imposed. 2
Based on the results obtained in present study, it
can be inferred that at the low circumferential
modes, extensional stiffness coefficients govem th
magnitude of the fundamental natural frequency,
whereas at the higher circumferential wave numbers, [3]
bending stiffness coefficients become the
dominating factor. This finding actually verifielset
dominance of extensional strain energy at low
circumferential wave numbers, and the dominance
of bending strain energy at high circumferential
wave numbers, as indicated by Arnold and
Warburton [12]. Thus, for anisotropic shells of
revolution with different shell wall lay-ups, it is
possible to compare the natural frequencies bjef t
shells qualitatively, simply by comparing the
stiffness  coefficients  for  the particular
circumferential wave number. The qualitative [g)
comparison can be very reliable at low and high
circumferential wave numbers. Such a qualitative
comparison may aid alternative lay-up design
decisions to be made relatively easily and faster,
composite shells of revolution that are expected to [7]
be exposed to different dynamic load environment.
Results of the present study also show that the
coupling stiffness  coefficients reduce the
fundamental natural frequencies. This conclusion is
expected because of the higher flexibility of thelb
of revolution due to the coupling terms. In additio
it was also observed that the effect of coupling
stiffness coefficients of anisotropic shells of
revolution on the fundamental natural frequencies
decrease at high circumferential wave numbers.
Therefore, at high circumferential wave numbers,
the use of orthotropic material models, which can b
obtained by omitting the coupling stiffness
coefficients of the anisotropic shell of revolutjon
can give very close results for the fundamental
natural frequencies of anisotropic shells of
revolution. However, at low circumferential wave
numbers, coupling terms may have significant effect
on the natural frequencies. Therefore, the efféct o
coupling stiffness coefficients on the fundamental
natural frequencies can not be disregarded, for the
free vibration and dynamic loading problems
involving anisotropic shells of revolution.

(1]

(5]

(8]

9]

[12]Arnold  R.N.

ALTAN KAYRAN, E. Yavuzbalkan
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