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Abstract  

In an effort to better understand the 
consequences of using anisotropic materials in 
modern structures, a study of the structural 
dynamics of CFRP laminated plates is necessary.  
Analytical solutions for the resonant frequencies and 
mode shapes of isotropic plates are presented as a 
means of validating finite element modeling (FEM) 
efforts.  The FEM work is then expanded to generate 
predictions of vibration characteristics in circular 
CFRP laminated plates.  In addition, the use of 
intelligently designed discrete stiffeners is 
investigated through the use of FEM.  The use of 
stiffeners to influence acoustic emissions is also 
discussed.  Preliminary experimental work has been 
completed and results agree with the FEM and 
analytical predictions. 
 
1 Introduction 

The dynamic response of a structure to a time-
varying load is intimately tied to its structural 
integrity and acoustic properties.  Fiber reinforced 
composite materials are becoming more popular all 
the time.  The use of carbon fiber reinforced 
polymers (CFRP), in particular, has expanded 
beyond specialized aerospace and military 
applications. The automotive and advanced sporting 
goods industries, among others, are finding an 
increasing number of ways to create useful 
structures with laminated composite materials.  The 
low density and relatively high strength and stiffness 
of CFRPs make them a popular choice for many 
structures, but the anisotropic nature of these 
materials demands that more care be taken with 
analysis and design.  Even when laminates are 
designed to have in-plane quasi-isotropic material 
properties, the out-of-plane properties are generally 
not isotropic.  CFRPs constructed with the 
commonly used [0 ±45 90]s stacking sequence are an 
example of such a laminate. 

 
2 Analytical Solutions 

2.1 Isotropic Plates  

The equation of motion for transverse 
deflections in a thin, isotropic vibrating plate is well 
known and has been presented by [1].  Equation 1 
shows the dependence on spatial coordinates and 
time.  D is the flexural rigidity of the plate, u3 is the 
displacement coordinate perpendicular to the plate 
surface, ρ is the plate density, h is the plate 
thickness, t is the time variable, and P is the applied 
load.   
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For isotropic plates the flexural rigidity, D, is 
defined by 
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where h is the (constant) plate thickness, υ is 
Poisson’s ratio, ρ is the density of the plate material, 
and u3 is the displacement coordinate perpendicular 
to the surface of the plate.   

In special cases where the boundary conditions 
and material properties of the plate can be expressed 
in simple mathematical terms, the equation of 
motion can often be solved as an eigenvalue 
problem.  The eigenvalues and eigenvectors 
represent resonant frequencies and mode shapes, 
respectively. 

For a circular plate clamped at its boundary, 
the mode shapes and natural frequencies can be 
expressed in terms of Bessel functions (see Equation 
4) [1].  According to [1] and [2], the resonant 
frequencies of an isotropic circular plate with a 
clamped boundary condition are given by 
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where n is the number of nodal diameters, m is the 
number of nodal circles (excluding the boundary), 
and a is the radius of the plate.  The mode shapes are 
given by 
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or, alternatively, the theta dependence can be written 
as a linear combination of two sine functions, 
separated by a phase angle of π/2 radians.  In this 
case, the transverse displacement is given by
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where u3 is the transverse displacement, r  and θ are 
polar coordinates with the origin at the center of the 
plate, Ji is Bessel function of the first kind, and Ii is a 
modified Bessel function of the first kind.   

 

 
Fig. 1. Theoretical node lines for an isotropic circular 
plate of constant thickness (m indicates the number of 
circumferential node lines, while n indicates the number 
of diametral node lines) 

The two equations are mathematically 
equivalent, but have different physical 
interpretations.  Equation 4 describes the mode 
shape and allows for one amplitude degree of 
freedom, A, and one rotational degree of freedom, 
represented by the arbitrary angle, φ.  Equation 5 is a 

linear combination of two identical mode shapes 
which are offset by a constant phase angle of π/2 
radians.  In Equation 5, the degrees of freedom are 
represented by the amplitudes, B and C. 

The node lines of a mode shape are the 
collection of points for which u3 is always zero.  
Figure 1 shows the location of node lines for several 
mode shapes of circular, isotropic plates.  Two types 
of node lines exist for isotropic circular plates.  
Circumferential node lines are parallel to the plate 
boundary, while diametral node lines are straight 
lines which pass through the center of the plate. 
2.2 Anisotropic Plates 

In general, the solutions to the equation of 
motion become impractical to solve analytically 
when boundary conditions and material properties of 
a plate do not contain the same type of symmetry 
[3].  Solutions have been derived for plates with 
Cartesian orthotropy and rectangular boundary 
conditions [4], and for plates with cylindrical 
orthotropy and circular boundary conditions [5], but 
very little work has been done with plates containing 
conflicting symmetries [6].   

Of particular importance to transverse 
deflections in thin plates is flexural rigidity.  Each 
ply in the laminate contributes to the flexural rigidity 
of the resulting plate.  If a bending moment is 
generated in the plate, one side is placed in tension, 
and the other side is placed in compression while the 
center of the plate is subjected to relatively low 
stress levels.  For this reason, the flexural rigidity of 
a laminated CFRP plate is highly dependent upon 
the properties of the laminate near each surface.  
Although the [0 ±45 90]s stacking sequence in quasi-
isotropic in the plane of the laminate, its out-of-
plane bending properties are anisotropic.  The plate 
exhibits approximately five times the flexural 
rigidity when bending in the zero degree direction as 
opposed to bending in an orientation closer to the 
ninety degrees.  Fig. 2 shows the anisotropic nature 
of a laminate can be minimized by increasing ply 
dispersion, even if the total laminate thickness does 
not change.  With an eight-ply laminate, the flexural 
rigidity varies by ±66% of the mean.  At 32 plies, 
and the same laminate thickness, the flexural rigidity 
varies by only ±5% of the mean.  

It is interesting to note that the angles of 
maximum and minimum flexural rigidity are 
perpendicular to each other.  Also, it is important to 
notice that the minimum and maximum angles are 
not a zero and 90 degrees, but slightly rotated to 
angles of approximately 10 and 100 degrees.  This 
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has occurred because of the secondary effect of 
having +45 degree plies closer to the outer plate 
surfaces than the -45 degree plies.  The proximity of 
the +45 degree plies to the plate surface has shifted 
the peak flexural rigidity slightly clockwise.  In a 
similar manner, the -45 degree plies have shifted the 
angle of minimum flexural rigidity clockwise. 

Fig. 2. Theoretical flexural rigidity of a laminated 
composite plate with respect to bending orientation angle 
(all three laminates have the same total thickness) 

The difficulties with analytical solutions to 
mismatched symmetry problems have led to the 
current use of FEM for analysis of CFRP laminated 
plates subjected to a circular boundary condition. 
3 Modeling Methods 

All FEM modeling was completed using 
version 6.5 of the ABAQUS software package.  The 
four-node, doubly curved, linear shell element 
selected for the models can be found in the ABAQUS 
element library.  Shell elements were chosen over 
three dimensional elements in order to maintain 
acceptable element aspect ratios with a reasonable 
mesh density. 

The boundary conditions of the circular plate 
are perfectly clamped.  The nodes at the perimeter of 
the plate are constrained from all translational and 
rotational motion.  While a perfectly clamped 
boundary condition in the model may be nearly 
impossible to recreate in an experiment, it provides 
an excellent opportunity to compare the results of 
the model to analytical results. 

No damping was included in the model.  
Experimental characterization of the damping 
properties of each of the plate types is beyond 
the scope of the current study.  While frequency 
dependent damping may influence the relative 
amplitudes of the modes when a plate is excited, 

low to moderate levels of damping have little 
influence on mode shapes and resonant 
frequencies. 

There are three types of plates that were 
modeled over the course of this study: isotropic 
plates, CFRP laminated plates, and stiffened CFRP 
laminated plates.  Each type of plate required 
slightly different modeling techniques.  Isotropic 
plates were the simplest model to construct.  Each 
shell element was assigned the same thickness and 
the material properties are the same in every 
direction.  The isotropic plates are 0.889 mm thick.  
In order to model the CFRP laminated plates, the 
thicknesses, material properties, orientations, 
through-thickness locations of each ply must be 
defined.  The [0 ±45 90]s laminate is made up of 
eight unidirectional plies, each of which is 
approximately 0.09 mm thick, for a total laminate 
thickness of 0.72 mm.  The CFRP plates with 
stiffeners were modeled in the same way as the 
unstiffened CFRP plates, except for the changes in 
plate thickness in the stiffened regions.  The 
stiffeners were assumed to be perfectly attached and 
were simply modeled as localized regions of the 
plate with extra unidirectional plies.  All of the 
stiffeners in this study are situated with the fibers 
aligned with the zero degree plies on the outer most 
surfaces of the laminate. 
4 FEM Results 

4.1 Isotropic Plates 

The FEM results for isotropic plates agree very 
well with mode shapes and frequencies predicted by 
the analytical work.  The first four modes, as 
predicted by the model are shown in Fig. 3. 
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Fig. 3. FEM results showing the (a) m,n=0,0 mode at 
2194 Hz, (b) m,n=0,1 mode at 4563 Hz, (c) m,n=0,2 at 
7466 Hz, and (d) m,n=1,0 mode at 8457 Hz for the 
titanium plate (transverse displacement values have been 
normalized) 

The FEM confirms the analytical solutions for 
the mode shapes and frequencies.  All of the mode 
shapes in the isotropic model are free to rotate in the 
plane of the plate about the center of the circular 
boundary.  The FEM results for the resonant 
frequencies and mode shapes of isotropic plates 
match very well with the analytical solutions 
described above.  Mode shapes and resonant 
frequencies for isotropic plates are easily predicted 
using either method. 
4.2 CFRP Laminated Plates 

The cylindrical symmetry found in the 
isotropic plates is disrupted by the anisotropic 
flexural rigidity in the [0 ±45 90]s CFRP laminated 

plate (see Fig. 1).  The lack of symmetry has a two-
fold effect on the natural modes of the CFRP plates.  
The most obvious effect is that new mode shapes are 
created.  Shapes like CFRP mode 4 (see Fig. 4d) 
cannot exist in an isotropic plate of uniform 
thickness.   

The second effect is the splitting of the double 
modes found in the isotropic plates.  At first glance, 
the CFRP modes 2 (Fig. 4b) and 3 (Fig. 4c) both 
resemble the m,n=0,1 mode for the isotropic plates.  
Both mode shapes have one diametral node line and 
zero circumferential node lines.  However, there are 
some important differences.  In the CFRP plate, 
mode 2 and mode 3 are two completely separate 
modes with distinct resonant frequencies.  Also, the 
anisotropic flexural rigidity of the CFRP plate 
requires that every mode shape be fixed in space.  
As can be seen in Fig. 4, each mode shape is 
symmetric about the axes of lowest and highest 
flexural rigidity, which are approximately 100 
degrees and 10 degrees, respectively.  Mode shapes 
which generate large bending moments in locations 
and directions of high flexural rigidity will occur at 
higher frequencies than mode shapes which do not 
match regions of high flexural rigidity with the 
locations subjected to large bending moments. 
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Fig. 4. FEM results for (a) mode 1 at 1936 Hz, (b) mode 2 
at 3302 Hz, (c) mode 3 at 4592 Hz, and (d) mode 4 at 
5198 Hz for the [0 ±45 90]s CFRP laminated plate 
(transverse displacement values have been normalized) 

4.3 Stiffened CFRP Laminated Plates 

In an effort to purposefully change the 
dynamic properties of the CFRP plate, discrete 
stiffeners were added to the model (see Fig. 5). 

 

Fig. 5. Diagram representing stiffener locations for the D-
2, D-4, and D-6 stiffeners (a), the T-4 stiffener (b) and the 
T-6-4-2 stiffener (c).  Red regions are six plies thick, 
green regions are four plies thick, and yellow regions are 
two plies thick.  The grey region is two plies thick for D-
2, four plies thick for D-4 and six plies thick for the D-6 
configuration. 

Two types of stiffeners were used in this study.  
Diametral stiffeners are the stiffeners that traverse 
the entire span of the plate through its center.  They 
have a constant thickness and width.  The diameter 
stiffeners are designated D-2, D-4 and D-6 for the 
two, four and six ply diameter stiffeners. The 
tapered stiffeners are stiffeners which do not fully 
traverse the span of the plate.  Instead, they stop 

short and are thickest near the plate boundary.  The 
tapered stifferners are designated T-4 for the four-
ply stiffener, and T-6-4-2 for the stiffener that 
gradually decreases in thickness from six plies to 
four plies to two plies (see Fig. 5).  All of the 
stiffeners are 6.35mm wide and consist of 
unidirectional plies which run parallel to the 
outermost zero degree plies in the laminate. 
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Fig. 6. FEM results for resonant frequencies 

The results of the FEM work are summarized 
in Fig. 6.  The diameter stiffeners show an increase 
in each resonant frequency for each mode shape 
stiffener thickness increases.  However, it is clear 
that some mode shapes are more sensitive to these 
types of stiffeners than others.  CFRP mode 3, in 
particular, is very sensitive to the thickness of the 
diameter stiffeners.  In fact, CFRP mode 3 is so 
sensitive to the diameter stiffeners that it has a 
higher resonant frequency than CFRP mode 4 in the 
D-4 and D-6 configurations.  In other words, the 
mode shapes have switched positions in frequency 
space.  See Fig. 8 for the mode shapes of the D-6 
stiffened plate.  The mode shapes have been 
distorted, but still posses the defining characteristics 
found in the mode shapes of the unstiffened CFRP 
plate. 
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Isotropic Mode m,n=0,0 N/A
CFRP Mode Mode 1 Mode 2 Mode 3 Mode 4
Aluminum 2214 4604 4604 N/A
Titanium 2194 4563 4563 N/A
CFRP 1936 3302 4592 5198
CFRP D-2 2089 3382 5163 5273
CFRP D-4 2239 3481 5754 5344
CFRP D-6 2381 3597 6336 5381
CFRP T-4 2054 3476 5523 5291
CFRP T-6-4-2 2132 3480 5269 5279

FEM Resonant Frequencies [Hz]
m,n=0,1

Fig. 7. Table of FEM resonant frequencies. 

An efficient stiffener should be able to increase 
the resonant frequency of a natural mode with a 
minimum amount of added mass.  The modeling 
results for the diametral stiffeners suggest that 
regions of high strain are particularly sensitive to 
changes in stiffness.  The tapered stiffeners are 
designed to add the most flexural rigidity to the 
regions of the plate subjected to the largest strains 
for CFRP mode 1.  The D-6-4-2 stiffener is thickest 
near the plate boundary, where the largest strains in 
the plate occur during mode 1 vibration.  The T-4 
stiffener adds the same amount of mass as the D-6-
4-2 configuration, but its allocation of additional 
plies to high strain areas is slightly different.   
According to the FEM results (see Fig. 7) the T-6-4-
2 stiffener is a more efficient configuration.  With 
the same amount of material, the T-6-4-2 stiffener 
increased the mode 1 frequency by 10.1%, while the 
T-4 stiffener increased the mode 1 frequency by 
6.1%.  By carefully choosing the location and fiber 
orientations of the stiffeners, selected modes can be 
efficiently shifted in frequency space. 

 

 

 

Fig. 8. FEM results showing (a) mode 1 at 2381 Hz, (b) 
mode 2 at 3597 Hz, (c) mode 4 at 5381 Hz, and (d) mode 
3 at 6336 Hz for the D-6 stiffened [0 ±45 90]s CFRP 
laminated plate (transverse displacement values have been 
normalized) 

5 Acoustics  
The acoustic emission of any structure is 

closely tied to its dynamical behavior.  When a 
structure is vibrating, its surface applies pressure to 
the surrounding air (or other medium).  The pressure 
waves in the surrounding air can be received by 
human ears where they are interpreted as sounds.   

The concept of consonance and dissonance 
comes from music theory.  When two pure tones are 
heard simultaneously, the pressure waves interact 
and can interfere with one another.  The resulting 
sound wave is then interpreted by the human 
auditory system.  When two tones are combined into 
a harmonious sound, the interaction is said to be 
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consonant.  When the interaction of two tones results 
in a non-harmonious sound, it is referred to as 
dissonant.   

If the difference in frequency between two 
tones is very small, a phenomenon called beating 
occurs.  Beating results in sound amplitude that 
oscillates with a frequency equal to the difference in 
frequency between the two tones.  The pitch heard 
when two tones cause beating is equal to the average 
of the frequencies of the two pure tones.  If the 
frequency difference in the two tones increases, the 
beat frequency increases.  Dissonance occurs when 
the beat frequency is a substantial portion of the 
tonal frequency. When this occurs, the periodicity of 
the resulting sound wave is disrupted and a rough, 
non-harmonious sound is heard.  Maximum 
dissonance occurs when two tones are separated by 
approximately ¼ of the critical bandwidth [7].  Over 
most of the audible range, the critical bandwidth is 
slightly less than ⅓ octave [7]. 

Consonant interactions occur whenever two 
pure tones are sufficiently separated in frequency 
space to avoid the non-harmonious interference 
phenomena that cause dissonance.  In an effort to 
avoid dissonant interactions between resonances, 
discrete stiffeners can be added to a structure to shift 
resonant frequencies and increase the spacing 
between modes of interest. 
6 Experiments  

Preliminary experiments have produced mode 
shapes which match the FEM results very well, and 
resonant frequencies which are within 30% of the 
FEM results [8].  Improvements in experimental 
design need to be made for more accurate frequency 
results can be expected.  Difficulties with 
quantifying material damping and creating ideal 
boundary conditions will be addressed in future 
work. 
7 Conclusions  

Although the [0 ±45 90]s CFRP plate has a 
stacking sequence which creates quasi-isotropic in-
plane material properties, the out-of-plane flexural 
rigidity is not isotropic.  The anisotropic nature of 
the CFRP plate allows for additional modes to be 
generated which cannot be found in an isotropic 
plate.  The extra modes change the structural 
dynamics and acoustical properties of the plate when 
compared to an isotropic plate of similar in-plane 
specific stiffness and dimensions. 

More work needs to be done, but these 
preliminary results show that stiffeners could be 

used to efficiently change the resonant frequencies 
of a laminated CFRP plate.  If done properly, 
selected resonances could be shifted away from 
other resonances in order to increase the likelihood 
of a consonant interaction between modes.  Much of 
the work described in this study is based [9], which 
contains many details not included in this paper. 
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