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Abstract  

This paper focuses on modeling development for 
active vibration control of a laminated beam, which 
is bonded with magnetostrictive fiber reinforced 
composite (MFRC) and excited by an impulsive 
force. Two dynamic analytical models are developed 
using the Euler-Bernoulli theory and Timoshenko’s 
theory of beams, respectively. A feedback control 
algorithm coupling the MFRC sensor and actuator is 
used. The active control magnetic field is applied to 
the MFRC actuator encircled by an actuation coil, 
and the required magnetic flux density is obtained 
from the sensing coil encircling the MFRC sensor. It 
is revealed from the numerical study that for the 
considered cases, the MFRC patches is more 
effective for vibration suppression of a beam than 
the piezoelectric fiber reinforced composite (PFRC) 
patches. A comparison of the natural frequencies for 
the beams with various MFRC patches is conducted 
between the present analytical and finite element 
analysis models. A good agreement is noted. 
 
 
1 Introduction  

Flexible structural members, such as beams, 
have been widely used in industry, and vibration 
control and performance improvement of such 
structures are important issues in practice, e.g., 
precise operation and control of aerospace systems, 
satellites, etc. However, due to the complexity of 
dynamics of flexible structures, vibration control 
using various active materials, such as piezoelectric 
and its composite materials [1-4], has drawn a 
significant attention of researchers over the past 
decades. This is owing to that the coupled 
electromechanical properties of piezoelectric 
ceramics and their availability in the form of thin 

sheets make them well suited for use as sensors and 
actuators for controlling structural response [2]. 
Similarly, magnetostriction is the phenomenon of 
strong coupling between magnetic and mechanical 
properties of some ferromagnetic materials, in which 
strains are generated in response to an applied 
magnetic field, while conversely, mechanical 
stresses in the materials produce measurable changes 
in magnetization. This phenomenon can be used for 
actuation and sensing [5]. 

Recently, magnetostrictive materials are being 
increasingly used as both sensors and actuators for 
active vibration control due to their advantages such 
as the possibility of remote excitation and easy 
embedability into the host material and structure. In 
particular, the magnetostrictive particles can be 
embedded into laminated composite structures 
without compromising the structural integrity. For 
example, Murty et al [6] investigated the feasibility 
of using an embedded Terfenol-D particle layer for 
the vibration suppression capability of a flexible 
cantilever laminated composite beam. Kumar et al 
derived a finite element formulation for the damping 
characteristics of an aluminum beam bonded with a 
distributed magnetostrictive layer under different 
boundary conditions and coil configurations [7], 
followed by analyzing  the damping characteristics 
of a titanium shell with a magnetostrictive layer [8]. 
Lee et al [9] applied a unified plate theory, including 
the classical, first-order, and third-order plate 
theories, to study the control of the transient 
response of laminated composite plates with 
Terfenol-D magnetostrictive layers, used as sensors 
and actuators. Pradhan [10] used the first-order shear 
deformation theory to study vibration control of 
functionally graded shells with embedded 
magnetostrictive layers. However, the application of 
magnetostrictive materials has been limited in 
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practice due to the factors such as brittleness in 
tension and development of eddy currents that limit 
the frequency range. At present, magnetostrictive 
composites, which are manufactured by combining a 
particle or fibre form of magnetostrictive material 
with polymer binder, attract much attention due to 
their advantages over the monolithic 
magnetostrictive materials such as less brittleness 
and large operation frequency bandwidth. This will 
lead to the application of these composites in active 
vibration control. 

In this paper, two dynamic analytical models 
are proposed for active vibration suppression of a 
laminated beam bonded with collocated or non-
collocated magnetostrictive fiber reinforced 
composite (MFRC) patches. These two models are 
developed using the Euler-Bernoulli theory and 
Timoshenko’s theory of beams, respectively, under 
the assumption of constant peel and shear strains 
through the bond line thickness [11]. A feedback 
control algorithm coupling the MFRC sensor and 
actuator is used. The active control electric field is 
applied to the actuation coil encircling the MFRC 
actuator, and the required magnetic flux density is 
obtained from the sensing coil which encircles the 
MFRC sensor.  

A numerical study is carried for discussing the 
effects of the major parameters of the MFRC patches 
such as the location of MFRC sensor, fiber volume 
fraction Vf and orientation angle θ of MFRC patch 
on the amplitude change of the free end deflection 
(ACFED) for a cantilever laminated beam. 
Subsequently, a comparison of the ACFED for the 
beam bonded with collocated MFRC sensor and 
actuator pair is conducted between the model 
developed using the Euler-Bernoulli theory and that 
using Timoshenko’s theory of beams. Also, the 
values of ACFED for the Timoshenko’s beam 
bonded with collocated MFRC sensor and actuator 
pair are compared with those bonded with collocated 
PFRC sensor and actuator pair. For verifying the 
present analytical models, the first three frequencies 
for the beam systems bonded with collocated MFRC 
patches and having various values of Vf and θ are 
compared between the present analytical and finite 
element analysis (FEA) models, and a good 
agreement is noted. 
 

 

\ 

2 Dynamic Analytical Models for Vibration 
Control 

Two laminated carbon fiber reinforced 
composite beam systems surface bonded with 
collocated or non-collocated MFRC actuator and 
sensor pair are considered in this study (see Fig. 1 
for the case of collocated MFRC sensor and 
actuator pair and Fig. 2 for the non-collocated 
MFRC sensor and actuator pair). The MFRC 
actuator encircled by a actuation coil is used to 
generate the actuation stress on the top surface of 
the beam for the suppression of structural vibration, 
and the MFRC sensor encircled by a sensing coil is 
employed to measure the magnetic flux density 
passing through the MFRC sensor, which is closely 
related to the strain along the beam segment 
bonded with a MFRC sensor. A feedback control 
model using a magnetic flux density control 
amplifier of gain KB is used for active vibration 
control of the laminated beam. The magnetic field 
applied to the MFRC actuator is directly 
proportional to magnetic flux density through the 
sensing coil. 

 
 

Fig.1.   A cantilever laminated beam bonded with 
collocated MFRC actuator and sensor 

patches 

 
 

Fig.2. A cantilever laminated beam bonded with 
non-collocated MFRC actuator and sensor 

patches 
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For active vibration control of a laminated 
beam using MFRC actuator and sensor pair, two 
dynamic analytical models are presented. One is 
developed using the Euler-Bernoulli theory and the 
other is established using Timoshenko’s theory of 
beams under the assumptions of constant peel and 
shear strains through the bond line thickness [11]. 
In this study, the MFRC patches are assumed to be 
perfectly bonded on the beam surfaces. Since the 
governing equations are different for the beam 
segments bonded with and without MFRC actuator 
or sensor, we divide the beam system into three 
pan-wise regions for the case shown in Fig. 1 and 
five regions for the case shown in Fig.2. The 
MFRC and beam segments in each region are 
considered as an Euler-Bernoulli beam or 
Timoshenko’s beam. Based on the corresponding 
beam theory and the assumptions mentioned 
previously, the required dynamic equations of 
motion for each component segment can be 
derived. For example, the dynamic equations of 
motion for the MFRC actuator and beam segments 
located in region II in Fig. 2 are given as follows 
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(2) For the laminated beam segment 
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Timoshenko’s theory of beams (i=a for actuator and 
b for the host beam), a, b, ρ, A, Y, W, t, q11, Q, T, M, 
τ, σ, H1, µ , w and ψ stand for the MFRC actuator, 
laminated beam, density, cross-sectional area, 
complex Young’s modulus, width of beam system, 
thickness, piezomagnetic constant for the MFRC 
patch subjected to an electric field in the 1 or x 
direction, shear force, longitudinal force, bending 
moment, shear and peel stresses in the adhesive 
layer between the MFRC actuator and host 
laminated beam, magnetic field applied to the 
MFRC actuator segment along the x or 1 direction, 
longitudinal displacement, transverse displacement 
and the deflection angle of the cross-section of the 
beam with respect to the vertical direction, 
respectively. For the shear and peel stresses under 
the assumptions of constant peel and shear strains 
through the adhesive layer thickness in adhesively 
bonded joints [11], they can be evaluated using the 
Eqs. (3-5) in Ref.[12] for the case using Euler-
Bernoulli theory and Eqs. (7-8) below for the case 
using Timoshenko’s theory of beams. 
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where G and ν are the shear modulus and Poisson’s 
ratio whereas the subscript ab stands for the 
adhesive layer. 

For the beam system shown in Fig. 1, a total of 
12 continuity conditions exist at the interface 
between region I and II as well as II and III, 
whereas for that shown in Fig. 2, a total of 24 
continuity conditions exist at the interface between 
region I and II to IV and V. They are given as 
follows 

biib uu )1( += , biib ww )1( += , biib TT )1( += , 

biib QQ )1( += , biib MM )1( += ,  
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∂

∂
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∂
∂ + )1(  (for the case using Euler-

Bernoulli beam) or biib )1( +=ψψ  (for the  case 
using Timoshenko’s beam). 

For the beam system bonded with collocated 
or non- collocated MFRC actuator and sensor pair, 
a total of 18 boundary conditions can be obtained 
and are listed as below 

(1) For the actuator 
0=laT , 0=laQ , 0=laM , 0=raT , 0=raQ , 

0=raM . 
(2) For the sensor 

0=lsT , 0=lsQ , 0=lsM , 0=rsT , 0=rsQ , 
0=rsM . 

(3) For the host beam 

0=lbu , 0=lbw , 0=
∂
∂

x
wlb (for the case using 

Euler-Bernoulli beam) or 0=lbψ  (for the case 
using Timoshenko’s beam), 0=rbT , 0=rbQ , 

0=rbM . 
where l stands for left hand side of the segment and r 
stands for the right hand side of the segment. 

By numerically solving the dynamic equations 
of motion for all component segments together with 
their boundary and continuity conditions, the 
required natural frequencies (ωi) and average value 
of the strain (εsavg) induced in the MFRC sensor 
which is encircled by the sensing coil can be 
obtained. Thus, for a selected natural frequency ω, 
the magnetic flux density Bs(Xs, ω) passing through 
the sensing coil with zero applied magnetic field H1 
and located at a distance of Xs from the fixed end of 
the beam can be obtained by  

),(),( 11 ωεω ssavgss XqXB =  (9) 

 
Considering the magnetic flux density feedback 
control with the control gain KB, the magnetic field 
H1 can be obtained by 

),(),(1 ωω ssBa XBKXH =  (10) 

 
where Xa is the distance of the MFRC actuator centre 
from the fixed end of the beam.   
 

 

3 Parametric Study 
In order to study the performance of MFRC 

actuator and sensor for active vibration control of a 
laminated composite beam, a baseline case with the 
beam length of 0.3m, width of 0.02m and thickness 
of 1.9mm is considered. The thickness of the MFRC 
patch and adhesive layer are chosen to be 0.4mm 
and 0.15mm. The width and length of the MFRC 
sensor and actuator are selected to be 0.02m and 
0.06m, respectively. The value of Xa is chosen to be 
0.09m whereas the value of Xs is selected to be 
0.09m for the case of collocated MFRC actuator and 
sensor pair and 0.21m for the case of non-collocated 
MFRC pair. The required complex Young’s modulus 
for the host beam made of T300/GY260 plain weave 
composite and adhesive layer are chosen as 
65.68(1+0.011i)GPa, and 2.15(1+0.011i)GPa, 
respectively [13]. The density for the host beam, 
magnetostrictive material CoFe2O4, matrix and 
adhesive layers are selected to be 1527.38kg/m3, 
5300kg/m3, 1200kg/m3 and 1600 kg/m3, 
respectively. For MFRC patches with different fiber 
volume fraction Vf and orientation angle θ, their 
corresponding Young’s modulus and piezomagnetic 
coefficients can be evaluated using the analytical 
model previously developed by the authors for the 
piezoelectric/magnetostrictive composite behavior 
[14] and the corresponding transformation matrix. 
The properties for the magnetostrictive material 
CoFe2C4 and matrix are listed in Tables 1 and 2 [15-
16]. In this study, the control gain KB is selected to 
be 3×105Am/Wb. By using the analytical model 
developed using the Euler-Bernoulli theory and the 
corresponding data for the baseline case, the 
variation trend of ACFED for the beam system 
shown in Figs. 1-2 with Vf and θ can be obtained, 
and plotted in Figs.3 for the case of θ=60° and Fig. 4 
for the case of Vf =0.6, where the ACFED is 
obtained using the following Eq.(11), in which FED 
stands for free end deflection of the laminated beam. 

 

%100×=
law control usingbeforeFED

 law control usingafter FED-law control usingbeforeFEDACFED
 (11) 
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Table 1.  Properties for CoFe2C4 [15] 
 

C11=C22 
(GPa) 

C12 
(GPa) 

C13=C23 
(GPa) 

C33 
(GPa) 

286 173 170 269.5 
C44=C55 
(GPa) 

C66 
(GPa) 

q31=q32 
(m/A) 

q33 
(m/A) 

45.3 56.5 580.3 699.7 

q15=q24 
(m/A) 

µ11 
(10-6 

NS2/C2) 

µ22 
(10-6 

NS2/C2) 

µ33 
(10-6 

NS2/C2) 
550 -590 -590 157 

 
Table 2.  Properties for matrix [16] 

 
C11=C22 
(GPa) 

C12 
(GPa) 

C13=C23 
(GPa) 

C33 
(GPa) 

C44=C55=C66 
(GPa) 

3.74 1.12 1.12 3.74 1.31 
 

Table 3.  Properties for PZT [17] 
 

C11=C22 
(GPa) 

C12 
(GPa) 

C13=C23 
(GPa) 

C33 
(GPa) 

C44=C55=C66 
(GPa) 

84.81 36.35 36.35 84.81 24.0 
e31=e32 
(C/m2) 

e33 
(C/m2) 

e15=e24 
(C/m2) 

ε31=ε32 
(10-9F/m) 

ε33 
(10-9F/m) 

44.37 50.18 14.02 7.11 -26.0 
 
From Figs. 3-4, we noted that for the beam 

system with the collocated or non-collocated MFRC 
actuator and sensor pair, the values of ACFED 
increases significantly with Vf andθ until Vf =0.8 and 
θ=60°, beyond those, the ACFED changes slightly 
except for the case shown in Fig. 3(b), in which 
ACFEDs for the case of mode I and III decrease 
significantly with Vf when Vf attains to 0.8. This may 
be caused by that the Young’s modulus of the 
MFRC patch increases significantly when Vf and θ 
attains to 0.8 and 60°, respectively (see Fig. 5(a) and 
6(a) in Ref. [13]). From Figs. 3-4, it is interesting to 
note that for the case of mode I, the values of 
ACFED for the collocated MFRC pair are greater 
than those for the non-collocated MFRC pair, 
whereas for the case of mode II and III, the values of 
ACFED for the collocated MFRC pair are less than 
those for the non-collocated MFRC pair. 

Figure 5 shows the variation trends of ACFED 
with Vf and θ for a beam system bonded with 
collocated MFRC pair, which are obtained using the 
analytical model developed based on the 
Timoshenko’s theory of beams. A comparison 
between Fig. 3(b) and Fig. 5(a) and that between 
Fig. 4(b) and Fig. 5(b) indicate that there is a good 

agreement between the ACFED values predicted 
using the Euler-Bernoulli theory and Timoshenko’s 
theory of beams. The differences of between them 
range from 0.36-6.9 % for the case of mode I, 0-
4.8% for the mode II and 0.2-6.9% for the mode III. 
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Fig. 3.      Variation trends of ACFED with fiber  
    volume fraction Vf for the cases of      
    vibration mode I to III and θ=60°. 
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Fig. 4.  Variation trends of ACFED with fiber  
      orientation θ for the cases of vibration  

                   mode I to III and Vf=0.6. 
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(a) For the case of θ=60° 
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   Fig. 5.  Variation trends of ACFED with Vf and 

   θ for the cases of vibration mode I to III  
    and having collocated MFRC pair . 
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For the sake of comparing the vibration 

suppression capability of a laminated beam bonded 
with the collocated MFRC actuator and sensor pair 
with that having the collocated PFRC actuator and 
sensor pair, the dynamic analytical model using the 
Timoshenko’s theory of beams and collocated 
MFRC actuator and sensor pair is modified by 
replacing the MFRC pair with the PFRC pair to 
evaluate the ACFED values for the beam bonded 
with the PFRC patches. By using the analytical 
model for the PFRC pair and the required data, 
which are the same as the  those for the baseline case 
previously mentioned for the MFRC patch, except 
for that the properties of the MFRC patch are 
replaced by those for the PFRC patch, the ACFED 
values for the beam bonded with PFRC patches can 
be obtained. The Young’s modulus and piezoelectric 
coefficients for the PFRC patches with various 
values of Vf and θ  can be obtained by following the 
similar procedure for predicting the properties of 
MFRC patches mentioned previously. The 
electromechanical properties for the piezoelectric 
material PZT are listed in Table 3 [17]. The density 
for the PZT is selected to be 7600kg/m3. An electric 
displacement (or electric flux density) feedback 
control algorithm with the control gain KB is 
employed here, and thus the electric field E1 applied 
to the PFRC actuator along the x direction can be 
obtained by 

),(),(1 ωω ssBa XDKXE =  (12) 

 
 where electric displacement is evaluated by 

),(),( 11 ωεω ssavgss XeXD =  (13) 

  
Figure 6 illustrates the variation trends of 

ACFED with Vf and θ for the cases of a laminated 
beam bonded with collocated PFRC pair.  A 
comparison of Fig. 5 and Fig. 6 reveals that the 
variation patterns of ACFED with Vf for the case 
with MFRC pair are different from those with PFRC 
pair, whereas the variation trends of ACFED with θ  
between them are similar until θ =60°, beyond that 
the ACFED values slightly decrease with θ  for the 
case with MFRC pair but slightly increase with θ  
for the case with PFRC pair. In addition, it is noted 
by comparing Fig. 5 with Fig.6 that the ACFED 
values for the case using collocated MFRC pair are 
much larger than those using collocated PFRC pair. 

Thus, for the cases considered here, it is preferred to 
choose the MFRC pair for active vibration control of 
a laminated composite beam due to their high 
ACFED value and low density. 
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Fig. 6.  Variation trends of ACFED with Vf and 

θ for the cases of collocated PFRC pair  
and vibration mode I to III. 
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4 Verification 

To verify the present analytical model, several 
2D plane strain FEA models for a cantilever 
laminated beam bonded with various MFRC actuator 
and sensor pair are established using the FEA 
software Strand7 [18]. For the beam systems bonded 
with the collocated MFRC patches having various 
values of Vf and θ, their corresponding first three 
frequencies, which are predicted using the present 
FEA and analytical models, are tabulated in Tables 
4-5, where Analy_E stands for the analytical model  
developed using the Euler-Bernoulli theory whereas 
Analy_T refers to the analytical model established 
using the Timoshenko’s theory of beams.   

 
Table 4.  Comparisons of the natural frequencies  

      with fiber volume fraction Vf predicted  
       by  the FEA, analytical models for the  
       beam system bonded with collocated  
       MFRC pair 
 

 Mode I (Hz) 
Vf FEA Analy-E Analy-T 
0.2 23.482 23.24 23.25 
0.4 23.88 23.62 23.63 
0.6 24.2 23.95 23.97 
0.8 24.56 24.32 24.34 
1 25.27 25.27 25.3 
 Mode II (Hz) 

Vf FEA Analy-E Analy-T 
0.2 133.49 134.66 134.9 
0.4 132.16 133.06 133.3 
0.6 130.9 131.61 131.87 
0.8 129.99 130.58 130.84 
1 130.77 132.01 132.38 
 Mode III (Hz) 

Vf FEA Analy-E Analy-T 
0.2 376.17 378.01 379.68 
0.4 378.2 378.03 379.72 
0.6 380.88 379.18 380.99 
0.8 386.55 383.85 396.68 
1 409.71 414.66 401.24 

 
 
 
 
 
 

 
 

Table 5.  Comparisons of the natural frequencies  
    with fiber orientation θ predicted by the  
    FEA, analytical models for the beam  
     system bonded with collocated MFRC  
     pair 

 
 Mode I (Hz) 
θ FEA Analy-E Analy-T 

15° 23.21 23 23.01 
30° 23.27 23.04 23.05 
45° 23.56 23.31 23.32 
60° 24.2 23.95 23.97 
75° 24.72 24.48 24.50 
90° 24.84 24.62 24.64 

 Mode II (Hz) 
θ FEA Analy-E Analy-T 

15° 127.7 128.74 128.98 
30° 127.94 128.88 129.12 
45° 128.83 129.67 129.91 
60° 130.9 131.61 131.87 
75° 132.53 133.24 133.52 
90° 132.95 133.67 133.96 

 Mode III (Hz) 
θ FEA Analy-E Analy-T 

15° 356.27 356.94 358.4 
30° 357.38 357.89 359.36 
45° 363.84 363.56 365.11 
60° 380.88 379.18 380.99 
75° 396.54 394.48 396.68 
90° 400.88 398.91 401.24 

 
 
From Tables 4-5, it is noted that there is a 

good agreement between the present analytical and 
FEA models. The difference between the FEA and 
analytical model with Euler-Bernoulli beam ranges 
0-1.1 % for the case of mode I, 0.45-0.81% for the 
mode II, 0.04-1.21% for the mode III, whereas the 
difference between the FEA and analytical model 
using Timoshenko beam ranges 0.08-1.05% for the 
mode I, 0.6-1.2% for the mode II, 0.03-2.62 % for 
the mode III. In addition, Tables 4-5 reveal that the 
variation trends of the natural frequencies with Vf 
andθ, which are obtained using the FEA and 
analytical models, are consistent well. 
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5 Conclusions 
In this paper, two dynamic analytical models 

are developed using the Euler-Bernoulli theory and 
Timoshenko’s theory of beams, followed by using 
these two models for active vibration suppression of 
a cantilever laminated beam bonded with MFRC 
actuator and sensor pair. For the case considered 
here, it is revealed from the numerical study that the 
collocated MFRC pair is more effective for active 
vibration suppression of a flexible beam than the 
non-collocated MFRC pair for the case of mode I, 
whereas for the case of mode II and III, vibration 
suppression capability of the beam with non-
collocated MFRC pair is better than that with 
collocated MFRC pair. It is also noted that for both 
cases of collocated and non-collocated MFRC 
actuator and sensor pair, the values of ACFED are 
closely related to Vf andθ. In general, they increase 
significantly with Vf andθ until Vf =0.8 and θ=60°, 
beyond those, the ACFED changes slightly. A 
comparison of the variation trends of ACFED with 
Vf andθ obtained using the present analytical models 
with the Euler-Bernoulli beam and Timoshenko 
beam shows that there is a good agreement between 
them. It is also noted from the numerical study that 
the ACFED values for the case with collocated 
MFRC pair are much larger than those with 
collocated PFRC pair, and thus for the cases 
considered here,  it is recommended to choose the 
MFRC pair for active vibration control of a 
laminated composite beam. Finally, the proposed 
analytical models are verified by showing a good 
agreement between the natural frequencies predicted 
using the present FEA and analytical models. 
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