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Abstract  

Based on Zig-Zag deformation assumption and 
Mindlin first order shear deformation theory, a finite 
element method for vibration and transfer function 
analysis of composite sandwich plates has been 
developed. Considering the viscoelasticity of face 
and core, a modal damping model on basis of 
Adams’ strain energy method (MSE) is established, 
and the formulas of stiffness, mass and damping 
matrix for the perfect and damaged composite 
sandwich plate with face/core debonding. According 
to the theories and models given above, the 
governing equations for numerical analysis are 
constructed. By some typical examples, the 
characteristics of nature frequency, modal and 
transfer function are investigated. The conclusions 
obtained can be useful for the damage identification 
of such structures. 
 
 
1 Introduction 

Most composite sandwich laminates structures 
working under dynamic loadings, therefore, the 
study of dynamic characteristics and damage 
behavior of delaminated sandwich laminates will 
provide regulations for profound understanding 
durability and allowable value of sandwich 
structures. Deformation characteristics and damage 
behavior of delaminated sandwich laminates are 
extremely complicated, moreover quite analytical 
difficulties in theory and experiment aspect relating 
to nonlinear dynamics problems of anisotropic 
material, such as frequency and modal analysis with 
delamination between face/core under constraint 
deformation and damage generation are the leading 

edge topic in vibration of damage sandwich 
laminates. With the formation of numerical 
analytical theories and models, an overview for 
those theories and models is systemic appreciated in 
reference [1-2], in which Reissner and Qing-hua Du 
theory are the most common sandwich plate theory. 
However, quite few research works has been 
reported on the dynamic characteristics of composite 
sandwich structures with face/core interface 
debonding. For such damage structure, the analytic 
method has to face many difficulties, while the 
numerical simulation provides a quite effective way 
as well as experimental study. The finite element 
analysis is a quite effective method for mechanical 
property of complex composite sandwich laminates. 

The paper deduced the finite element 
formulations of vibration and frequency response 
function based on Zig-zag deformation assumption 
and Mindlin theory related to the toothed feature and 
the shear effect of the face and the core for sandwich 
laminates. Considering the viscoelasticity of face 
and core, a modal damping model on basis of 
Adams’ strain energy method (MSE) is established, 
and the formulas of stiffness, mass and damping 
matrix for the perfect and damaged composite 
sandwich plate with face/core debonding. According 
to the theories and models given above, the 
governing equations for numerical analysis are 
constructed. By some numerical examples, the 
natural frequencies and modes are discussed and the 
effects of delaminations between face/core on 
frequency response function are considered, so the 
dynamic behavior of delamination between face/core 
got solved for sandwich laminates in frequency 
domain. 
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2 Formulations 

2.1 Displacement of Sandwich Plates[ 3]  

Based on Zig-zag deformation assumption and 
Mindlin first order shear deformation theory, the 
expressions of the displacement field of the 
sandwich composite laminates can be written as 
follows: 
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The lower face 
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In which, 、 、  are the displacement 
component of core middle plane of the core; 

0u 0v 0w

1yθ 、

1xθ 、 2yθ 、 2xθ 、 3yθ 、 3xθ  are the rotational 
components of the upper laminates, the core and the 
lower laminates, respectively. Adopting the eight-
nodes isoperimetric element discrete, each node with 
nine degrees on freedom（ ， ， ，0u 0v 0w 1xθ ，

1yθ ， 2xθ ， 2yθ ， 3xθ ， 3yθ ）. 
  For the damaged sandwich laminates plate 

between the laminates and the core, the plate can be 
divided into three parts. In accordance with the 
requirement of displacement continuity at the nodes 
along the delaminated front between perfect and 
delamination regions, the additional continuity 
conditions must be imposed in Ref.[4]. 
2.2 Stiffness Matrix of Delaminated Sandwich 
Laminates Plate 

Adopting the item-isoperimetric interpolation 
to construct the eight-node isoperimetric element, 
according to the variation principle, the stiffness 
matrices can be given as    
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While 1i = 3j = , , and  1i = 1j = 2i = ，

3j = , the Eq.(4) represent the element stiffness 
matrix of the core, the upper and the lower, 
respectively. In which,  and ( )nB ( )nD  are strain-

node displacement matrix and elasticity matrix, 
respectively. 
2.3 Mass Matrix of Delaminated Sandwich 
Laminates Plate 

The kinetic energy of each part of sandwich 
can be expressed as 
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In which， subscript I=1, 2, 3 represent the 
upper laminates, the core and the lower laminates, 
respectively. The mass matrix according to variation 
principle can be written as 

∫
Ω

Ω= dT RNNM                                 (6) 

Here N is the shape functional. Density matrix 
R can be expressed as , and for the upper, 
lower laminates and the core, respectively. (See 
Ref.[3-4].) 
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2.4 Damping Matrix of Delaminated Sandwich 
Laminates Plate 

According to Adams’ strain energy theory of 
composite laminates plate[5], the specific damping 
capacity ψj corresponding to j-th mode can be 
determined by the following formulation: 
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Here, {φBBjBB} is the j-th modal shape of the structures, 
 and  denote the structural stiffness and the 

damped structural stiffness matrix, respectively. For 
the upper laminates: m=n=1, for the lower laminates: 
m=2 ， n=3 and for the perfect base laminates: 
m=1，n=3. If 

e
iK e

diK

jξ  is defined as the modal damping 
ratio for the j-th mode, thus 
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                 πψξ 4jj /=                              (8) 

Furthermore, the damping matrix [C] can be 
given by Raleigh damping model 

                 KMC   βα +=                             (9) 

3 Motion Wquations and Solution 
According to Hamilton’s principle, the 

undamped-free vibration equation and the motion 
equation of sandwich plate can be written in terms of 
relation  

0=+ KqqM &&                                      (10) 

                                  (11) fKqqCqM =++ &&&

The solution for solution Eq. (10) is subspace 
iterative method. To ensure integral stability and 
accuracy in time domain[6], the PD-S form precise 
time-integration iteration formulation is adopted in 
Eq. (11).  

Assumption that the linear displacement 
response conform to the expression 

under simple harmonic excitation, and 
substitute it into Eq.(11). The first to N order modes 
are conversed into regularized modes according to 
the normal property of vibrating. Then after 
derivation, the frequency response function H can be 
written as  
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The amplitude and phase frequency response 
of point m excited by unit simple harmonic loading 
in point n can be expressed by real part and 

imaginary part shown as 
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4 Numerical Examples and Discussion 
Consider a [(0/90)s/core/(0/90)s] sandwich 

laminated plates with length and width  600mm and 
240mm as shown in Fig.1. A penetrated 
delamination area with varying length Ld is in width 
orientation of the middle span. The boundary 
conditions as: fixation at y=0, free at other sides. 

The application of exciting force lies in point 1 
(x=180mm,y=600mm), the corresponding attribute 
points 2 and 3 (x=240mm，y=300mm) in upper and 
lower laminates after delamination between 
face/core. The thickness of the laminates is 
0.125mm， the material property of the faces as: 
E11=37.78 GPa ， E22=10.90 GPa ，

G12=G13=G23=4.91GPa ， ν 12=0.3 ，

ρ=1813.9Kg/m3，ψ1=0.1385%，ψ2 = 0.8037%，ψ4 

= ψ5 = ψ6 = 1.0998%；the thickness of the core is 
5mm， and the material property of the core as: 
E11=113.5MPa ， E22=3.27MPa ，

G12=G13=G23=18.86MPa ， ν 12=0.32 ， ρ=130 
Kg/m3，ψ1=0.1385%，ψ2 = 0.8037%，ψ4 = ψ5 = 
ψ6 = 1.0998%；ψ1=ψ2 = 2.88%，ψ4 = ψ5 = ψ6 = 
6.7%。 

 

 

 

 

 

 

 

 

 

 

 

The effects of face/core debonding size on the 
natural frequencies are illustrated in Fig.2 where the 
five curves coincide with the first five orders from 
the bottom to top. From the figure, it can be 
observed that each frequency presents decrease 
tendency associating with the increase of debonding 
length. The first three frequencies vary slightly and 
the fourth to fifth descend severely with the increase 
of debonding length lies in that the low order modes 
correlate with the sandwich structure integrity 
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Fig.1   Cantilever composite sandwich 
plate 

Fig.2 Effect of debonding size on natural frequency 
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characteristics, but the high order ones depend on 
the local deformational features, namely, the 
debonding of face/fore induces the stiffness 
weakness of sandwich plates while the effect of 
debonding present relatively weak for the upper or 
lower sublaminates deform together with the base 
ones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5 Conclusions 
The transfer function of debonding length 33% 

and 20% are shown in Fig.3. The excitation forcing 
point deviate the centerline of the sandwich plate in 
order to ensure the first ten modes deformation 
obviously. The location of resonance hump changed 
for the debonding between face/core, and the change 
drive to become obvious with the debonding area 

increase for the debonding induced the variation of 
high order frequencies. 

A general framework has been developed for 
the vibration and transfer function analysis of 
debonding composite sandwich plate. From 
numerical results of some typical examples, the 
important observations have been concluded as 
follows: The debonding of face/core decrease the 
natural frequency of sandwich plates, but the extent 
is different depends on the order of frequency, 
namely, the influence on high order frequency is 
more obvious than low orders. The location of 
resonance hump changed for the debonding between 
face/core, and the debonding induced the variation 
of high order frequencies. 
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