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Abstract  

Nonlinear instability associated with 
piezoelectric composite laminates with debonded 
interfaces under dynamic loads has been studied. On 
basis of Reddy’s simple higher order shear 
deformation theory a dynamic instability equation, 
called Methieu equation, was deduced, which was 
considered nonlinear elastic, damping, axial inertia 
force and electromechanical interaction effects， 
and the corresponding analytical solution was given.. 
From some typical examples, it is clear that the 
effects of interfacial debonding length and feed-back 
control on the instability regions, axial and 
transverse resonance frequency and the maximum 
deepness of “traction” are significant. Some 
typical examples indicate that the dynamic 
instability behavior of the laminates gradually 
decreases with increasing interfacial debonding 
length; and the effects of feed-back control for the 
case of laminates with short interfacial debonding 
damage are rather weaker than that for the case of 
laminates with long length interfacial debonding 
damage. For the latter, feed-back control on the 
laminates causes decreasing the interaction regions 
between axial and transverse parameter vibrations 
with increasing debonding length. 
 
1 Introduction  

    Engineering structure components are frequently 
affected by the dynamical load in a flat surface, and 
the load bearing abilities of those are often 
destroyed by the buckling damage resulting from 
the dynamical effect. Bolotin and Tang Wenyong 
comprehensively summarized some progresses in 
the research of the dynamic stability for isotropy 
and/or composite materials respectively in Ref.s [1] 

and [2]. Recently, with the development of 
intelligent materials, people have attached 
increasingly attention to the research of using 
sensor and driving device made by intelligent 
materials to control the vibration of the structure. 
Most of intelligent material controlling is applied to 
the controlling of modality, damping and vibration. 
Therefore, accurate models of the electro-
mechanical interaction between the structure and 
piezoelectric materials are required to design an 
active system. L W Chen[3] et.al considered a 
slender laminated composite beam with 
piezoelectric layers subjected to axial periodic 
compressive loads. G H Qing[4] et.al proposed an 
effective numerical measure to analyze the dynamic 
property of piezoelectric composite laminates; S C 
Choi et.al [,5] made a research in the vibration 
control of pre-twisted rotating composite thin-
walled beams containing piezoelectric layer. 
Whereas most of these studies focused on 
perfecting the analysis of complete structure, not on 
dynamic stability of piezoelectric composite 
laminates with interfacial debonding damage. 

    This article has studied on dynamic stability of 
piezoelectric composite laminates with interfacial 
debonding damage, and discussed the effect of 
interfacial debonding damage and feed-back stresses 
on dynamic instability regions of laminates according 
to the principle of changing the state of driving 
components to control piezoelectric composite 
laminates with interfacial debonding damage. The 
work would provide valuable analysis measure and 
designing suggestion for the analyzer and designer of 
intelligent composite material structure. 

 

2 Analysis model for piezoelectric composite 
laminates with interfacial debonding damage 
based on Reddy’s theory  
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Fig.1. Sketch of analysis model for piezoelectric 

composite laminates with interfacial debonding damage 

Fig.1 shows a composed plate consisting of a 
composite laminates as the main structure and two 
piezoelectric ceramics adhered on upper and lower 
surface, which act respectively as the driving device 
and sensor for the whole structure. Because of the 
big difference in the properties of materials between 
intelligent material and main structure, it is very 
easy to get interfacial debonding damage in the stick 
interface between driving device, sensor and main 
structure. Suppose a couple of through-width 
interfacial debonding damages with same length are 
located at the upper and lower stick interface and 
symmetrically distributed in mid-span of the plate, 
respectively, which divide the whole structure into 
five parts, as shown in Fig.1, and outside of the plate 
is installed the control system. Its main working 
principle is: the whole plate will be vibrated under 
the periodicity load in plate axial direction, and as a 
result of the change in the plate of sensing 
component; some data collected is input into outer 
control system, that forces the driving component to 
act correspondingly, so that the whole structure will 
be changed and controlled. 
 

3 Methieu equation of nonlinear dynamic stability 
analysis for piezoelectric composite laminates with 
debonded interfaces 

Using Reddy’s simple higher order shear 
deformation theory and considering the constitutive 
relations of laminae and ceramics, and based on 
Hamilton’s variational principle (as shown in 
equation 1) 

[ ] 0T U W dtδ − + =∫                  (1) 

the following dynamic equations for each sub-
laminates in the domain Ωi (i= 1~5), can be deduced 
as   
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(2) 
As the same way in authors early work[6,7], the 

 nonlinear dynamic stability equation, called Methieu 
 equation, can be given as:  
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(3) 
Because the space is limited, the deducing procedure 
and formulae of analytical solution corresponding 
above equation are omitted here; however the 
readers can find them in Ref.s [6, 7]. 
 

4 Analysis and discussion of the numerical results 

4.1 The variations of closed-circle feedback control 
stress with interfacial debonding lengths  

Fig.2 illustrates the variations of closed-circle 
feedback control stress vs. l and plate length L. 
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Fig.2 The variations of closed-circle feedback control 

stress vs. l/L 

From figure 2, it can be seen that feedback control 
stress increases with increasing the value of l/L. 
However, for l/L < 20%, even l/L increases a little, 
the feedback control stress increase rapidly; for l/L > 
40%, the variety rate of feedback control stress vs. 
l/L. is rather slow, whereas for l/L > 80%, the 
driving machine will not provide enough feedback 
control stress, in order to bring the structure back to 
the former state. 

4.2 The variations of dynamic instability regions with 
interfacial debonding lengths considering damping effect 

The first and second dynamic instability regions 
for the plates with l/L = 20% and 50% in the non-
conservative system are shown in Fig.3, respectively. 
The curves in double line represents the results for 
the case of perfect plate under control, in dotted line 
for the case of plates with debonded interfaces 
without control, while in the solid line for the case of 
plates with debonded interfaces under active control. 
From the Figure, it indicates: (1) the interface 
debonding induces the variety of dynamic instability 
regions of the plate, and the first dynamic instability 
region is larger than the second dynamic instability 
region; (2) the interface debonding induces locations 
of the first and second dynamic instability region 
move down and corresponding areas decrease, hence, 
the value of parameter resonance frequency of the 
plate decreases; (3) Compared the curves of l/L 
=20% and l/L =50% shows the variety of dynamic 
instability region for the plate with small length 
debonded interface is more significant than for the 
one with large debonded interface.  

 
(a) 

 
(b) 

Fig.3 The variations of the first and second dynamic 
instability regions with closed-circle feedback control 

stress considering damping effect 

4.3 The variations of amplitude of parameter 
vibration with interfacial debonding lengths 
considering axial inertial force and damping 
effects 

Fig.4 gives the variations of amplitude of 
parameter vibration with interfacial debonding 
lengths considering axial inertial force and damping 
effects. From the Figure， It can be seen: (1) with 
increasing the debonding length, the frequency 
values of axial parameter resonance and normal 
inertial vibration of the plate decreases, 
simultaneously, and the former decrease more 
dramatically than the later ， on contrary ， the 
influence of the biggest “traction” depth[6,7] on 
frequency values the later more significant than the 
former; (2)  feedback control force can promote the 
biggest “traction” depth of normal parameter 
resonance, efficiently; however it can’t increases   
the frequency values of parameter resonance; (3)  
the effects of feed-back control for the case of 
laminates with short interfacial debonding are rather 
weaker than that for the case of laminates with long 
length interfacial debonding. For the latter, feed-
back control on the laminates causes decreasing the 
interaction regions between axial and transverse 
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parameter vibrations with increasing debonding 
length 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.4 Parameter vibration of the plates with different 
debonding lengths considering damping and axial inertia 

force effects 

5 Conclusion  

（1） The character of stability of the piezoelectric 
composite laminates with debonded 
interfaces can be effectively promoted by 
reasonably adjusting the state of the driving 
piezoelectric component. 

（2） The analysis method and conclusions 
provided are reference values for engineers 
to get better understanding of inefficiency of 
the intelligent composite plates 
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