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Abstract  

This paper presents a geometrical nonlinear 
analysis for the single strap model of single-sided 
adhesively bonded composite patch repairs to 
cracked structures subjected to tension. In this 
analysis, the equilibrium equations are derived by 
considering the large deflections of the substrates 
along their entire lengths. By neglecting the higher 
order items, analytical solutions for the single-strap 
patch repair model are obtained, and the solutions 
are then simplified for engineering applications. The 
geometrically-nonlinear finite element analysis was 
conducted using MSC/NASTRAN to validate the 
present closed-form solutions. The numerical results 
indicate that the present closed-form solutions and 
their simplifications correlate very well with the 
nonlinear finite element computations. 
 
 

1 Introduction  

Adhesively bonded patch repair technology has 
been widely used to extend the service life of a 
cracked structure.  It is easy to use in practice and 
can significantly enhance structural performance. To 
efficiently apply this technology, stress analysis for 
this type of bonding structure must be conducted 
[1]-[2]. In practice, bonded composite patch repairs 
can come in two forms: double-sided patches and 
single-sided patch.  The single-sided patch repair has 
been most widely used because it is practically easy 
to access one side of a cracked structure. 

Figure 1 depicts a simple single-strap joint 
model studied here for simulating a strip of a single-
sided patch repair to a cracked structure. When there 
is no support in the overlap region, large out-of-
plane deflections in both substrates have been 
observed [3]-[4]. In this case, it is difficult to obtain 
analytical solutions for such a single-strap joint due 
to geometrical nonlinearity. Thus geometrical 

nonlinear finite element analysis (NFEA) has been 
widely used to take into account the large 
deflections and to predict stresses in adhesive and 
substrates [5]-[8]. 
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Fig. 1 A single strap joint model for simulating 
single-side patch repair 

 
To develop closed-form solutions for the 

single-strap joint shown in Fig. 1, it is important to 
review the works done for single-lap joints.  In 1944, 
Goland and Reissner [9] presented a stress analysis 
for adhesive joints.  In determining the edge moment 
for the single lap joint, the overlap was treated as 
one single beam by ignoring the adhesive layer. In 
1973, Hart-Smith attempted to extend the 
formulation given by Goland and Reissner by 
considering the influence of adhesive layer on the 
edge moment factor. However, the features of large 
deflections of the substrates were not included in his 
formulation [10]. Oplinger [11] attempted to include 
the influence of large deflections of the substrates in 
the Hart-Smith’s formulation. In his formulation, 
only adhesive shear strain and substrate deflections 
were coupled based on the assumptions used in his 
paper.  Recently we presented new closed-form 
solutions for nonlinear analysis of adhesively 
bonded single lap joints, in which large deflections 
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of the substrates in the overlap region are coupled 
with both adhesive strains [12].   In this paper, we 
intend to extend our solutions for single-lap joints to 
the case for single-strap joint as shown in Fig 1.  To 
our best knowledge, there exist no such closed-form 
analytical solutions for a fully-coupled stress 
analysis of the adhesively bonded single-strap joint 
in Fig. 1 in the open literature. 

2 Theoretical formulations and solutions 

Consider the single-strap model shown in Fig 1, 
substrates 1 and 2 are assumed to be identical. They 
can be either isotropic or composite.  For the case of 
composite substrates, the lay-up of each substrate is 
assumed to be symmetrical. To analyze this model, 
we subdivide the structure into 4 parts. Because of 
the symmetry, only the left half (Parts O1-I and I_II) 
is considered. 

2.1 Equilibrium equations 

To develop the governing equations, the 
following variables are introduced: 

122 uuus += ; 122 wwws −= ; φφφ −= 22 s  

122 uuua −= ; 122 wwwa += ; 122 φφφ +=a  

122 NNNs += ; 122 NNNa −=  

122 QQQs −= ; 122 QQQa +=  

122 MMM s −= ; 122 MMM a +=                    (1) 
 
where u, w and φ are the axial displacement, 
transverse deflection and the angle of rotation, 
respectively; and N, M and Q are the stress resultants, 
as shown in Fig 2. The subscripts 1 and 2 denote the 
quantities for substrates 1 and 2 respectively, and s 
and a represent the symmetrical and anti-
symmetrical combinations of these physical 
quantities. 

The equilibrium equations considering large 
deflections of the substrates for the free body 
diagram shown in Fig.2 are: 
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where t1 is the substrate thickness; τ and σ are the 
adhesive shear and peel stresses. 
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Fig. 2 Typical free body diagram in the overlap 
regions 

 
By using the variables defined in Equation (1), 

the equilibrium equations can be transformed into: 
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In Equation (3), by differentiating the 3rd and 

6th equations, into which substituting relations of the 
1st, 2nd, 4th and 5th equations, and by neglecting the 
higher order items, we have: 

 

0=
dx

dNs ; 
dx
dN

dx
Md s

s
s φσ −=−2

2

                        (4) 

0=−τ
dx

dNa ; 
dx

dN
dx
dt

dx
Md a

s
a φτ

−=+
2
1

2

2

           (5) 

 
Equations (4) and (5) are derived from a 

geometrically-nonlinear analysis for adhesive joints 
with the same thickness substrates. There is no other 
limitations except for neglecting the higher order 
items,  )( sau φ′′  and )( aau φ′′ . 

It is noted that Ns is a constant, namely, 
FNs 2

1= , for the case considered in Fig 1 where 
the remote tensile force F is applied at the ends of 
the single-strap joint as a given constant. 
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2.2 Constitutive relationships 

When identical substrates are considered and 
the Euler beam theory is employed, the constitutive 
relationships of the substrates and adhesive are [12]: 
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in which, Ea and Ga are Young’s and shear moduli 
of the adhesive; and ta is the adhesive thickness. 

2.3 Governing differential equations with large 
deflections 

By combining equations (4)-(7), the governing 
differential equations for the single-lap overlap 
regions with large deflections can be derived as 
follows: 
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2.4 Analytical solutions for the overlap regions 

The analytical solutions for equations (8) and 
(9) are given respectively by: 

 
21 sss AxAu +=  

21211 sin)coshsinh( ssssss xBxBw βββ +=  
     xxBxB sssss 21413 cos)coshsinh( βββ ++    (10) 
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     52423 coshsinh aaaaa AxAxA +++ ββ  
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      6514 cosh aaaa BxBxB +++ β                        (11) 

 
In equations (10) and (11), the eigenvalues are 

given by: 
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where, 
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For laminated substrates, the coefficients αa 

and αk reflect the influence of their lay-ups. For the 
isotropic materials, αa = 1 and αk = 3. 

2.5 Analytical solutions for single-strap joints 

The integration constants of equations (10) and 
(11) can be determined by using the boundary and 
continuity conditions.  For the single-strap joint in 
Fig 1, the stress-resultant boundary conditions are: 
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At the other end of the overlap cx = : 
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In equations (14) and (15), MkI and MkII are the edge 
moments at cross-sections I and II, which are to be 
determined.  In equations (10) and (11), there are 
only 12 independent integration constants.  In 
equations (14) and (15), there are 9 independent 
boundary conditions.  Thus five extra conditions are 
required to determine the 12 integration constants 
and the two edge moment factors. 

It is noted in equations (14) and (15) that the 
shear force Q is perpendicular to axis x, which is 
different from the shear force V in the deformed 
beam cross section.  

2.6 Edge moment factors and their simplifications 

Similar to Ref [9], the axial displacement u3 
and the large deflection w3 for substrate O1I can be 
expressed as: 
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where, 
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and 1ou  is a unknown integration constant.  Together 
with the solutions in equations (10) and (11), we 
need six conditions to determine six unknowns.  
These six conditions are: 
 
At cross-section I, we have the following three 
displacement continuity conditions: 
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                (18a)                   
At cross-section II, we have the following three 
symmetrical conditions: 
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With the six conditions, we can develop the 
closed-form expression for the edge moment factors. 

When the approximations used in the 
adhesively bonded single lap joints in Ref [12] and 

21 aaa ββαβ >>≈ τ are employed, and the solutions 
of edge moment factors can be simplified into: 
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In Equation (19), edge moment factors are 

defined as: 
 

)( 1 a
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I ttF
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3. Numerical results 

The present formulation can be applied to 
patch repairs of cracked structures of isotropic and 
composite substrates with symmetrical lay-ups. In 
this paper, we only present numerical results for the 
isotropic substrates. We use the following 
geometrical sizes and materials properties: 

The isotropic substrates: t1 = 1.6 mm, ta = 0.2 
mm, c/t1 = 8, l/c = 5, which represents the relatively-
short overlap, The material properties::E1 = 70 GPa, 
ν1 = 0.3. 

The adhesive material properties: Ea = 2.4 GPa, 
νa = 0.4. 

To verify the present closed form formulation, 
the geometrically-nonlinear finite element analysis 
(NFEA) is conducted using the commercial finite 
element analysis (FEA) package MSC/NASTRAN. 
It is noted that all geometrically-nonlinear properties 
of the repairs can be modeled in the FEA package.  
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3.1 Edge Moment factors kI and kII 

The edge moment factors kI and kII for the 
isotropic patch repairs predicted by the present 
formulation and the geometrically-nonlinear finite 
element analysis (NFEA) are plotted in Figs 3 and 4.  
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Fig.3 Edge moment factor kI for the isotropic 

substrates 
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Fig.4 Edge moment factor kII  

 
Meanings of the abbreviations used in Figs 3 

and 4 are: NFEA – geometrically-nonlinear finite 
element analysis, Present (S) – the present simplified 
solutions, and Present (F) – present full solutions. 
These abbreviations will always be used in Fig 5 of 
this paper. 

It can be found from Fig 3 that, when βkc = 
2.25, edge moment factors kI present by the NFEA, 
the present simplified and full solutions are 0.115, 
0.118 and 0.12 respectively. Fig 4 indicates that the 

corresponding values of edge moment factor kII are 
0.387, 0.365 and 0.378, respectively. 

At βkc = 2.25, the axial average stress in the 
outer substrate O1I is 507 MPa, which is normally 
larger than or close to the failure stress of a 
substrate.  Thus it is reasonable to limit our 
numerical study to the case when βkc > 2.25. 

Figs 3 and 4 indicate that the present solutions 
for the edge moment factors kI and kII correlate with 
the present numerical results obtained using full 
geometrical nonlinear finite element analysis using 
MSC/NASTRAN. It also indicates that the present 
simplified solutions for both factors are in excellent 
agreement with their full solutions. 

It is noted that kI = 0 and kII = 1 for the linear 
analysis of the single strap joint shown in Fig 1. This 
clearly shows the important role of the highly 
geometrical nonlinear property in predicting edge 
moment factors and then stresses in adhesive and 
substrates for the single-sided patch repairs as 
observed in Figs 3 and 4. 

3.2 Influence of peel strain on the edge moment 
factors 

In this section, we investigate the influence of 
peel strain on the edge moment factors.  The 
contribution of the peel strain term may be neglected 
by directly ignoring the terms with subscript s in the 
solutions given by equations (19) and (20). Fig 5 
depicts the computed kI and kII with and without 
considering the peel strain in the solution in 
equations (19) and (20). 
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Fig.5 Edge moment factors with and without peel 
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Fig 5 indicates that, kII = 0.378 and kII = 0.468 
for the fully coupled solution (namely with peel 
strain considered) and that without peel strain when 
βkc = 2.25.  It is noted that ignoring the peel strain in 
the full solution leads to a 24% increase in the edge 
moment factor kII.  This shows that the peel strain 
must be included in the full coupled formulations. 

4. Conclusion 

This paper presented a geometrically-nonlinear 
analysis for the adhesively bonded single-strap joint. 
The derived analytical solutions and their 
simplifications for the single-sided composite patch 
repairs well correlate with the geometrically-
nonlinear finite element analysis. 

Numerical results demonstrated the highly-
nonlinear property of the single-strap model for 
simulating the single-sided patch repairs. Fully-
coupled formulation with large deflections of the 
overlap is generally required for analyzing the 
single-sided patch repairs of cracked structures. 
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