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Abstract 

Oversized quasi-isotropic tensile specimens 
were manufactured from IM6/3501-6 graphite/epoxy 
prepreg.   Seven specimens were scarfed in the 
center of the panel, and four of the panels were 
subsequently repaired.  The repair patch consisted 
of a ply-by-ply replacement of the removed material 
with a FM-300M-05 film adhesive placed between 
the repair patch and the scarfed specimen.  The 
patch and adhesive were then co-cured.  The 
repaired and unrepaired specimens were strain 
gaged and tested to failure.  A three-dimensional 
failure analysis was performed. The strength 
prediction was based on the state of stress in the 0° 
plies by taking into account the redistribution of 
stress due to adhesive failure. The performed 
analysis accurately predicted both the strength of 
the scarfed and repaired panels based solely on 
properties characterized by testing unnotched 
standard coupons. 

 

1 Introduction 

The use of flush or nearly flush repairs for 
composite structures to maintain strict aerodynamic 
outer mold line requirements is a technology that is 
increasingly becoming essential to maintaining 
composite-dominated aircraft structures.  
Unfortunately, there are only a limited number of 
studies on scarf repairs and patches.  The published 
studies have described both experimental and 
numerical/analytical evaluation of the strains and 
failure loads of tension and compression loaded test 
articles and some of the shortcomings of current 
capabilities (for example [1,2]). 

 

 

2 Specimen Preparation and Testing 

Panels measuring 30 cm × 61 cm (12 in × 24 in) 
with a [45/0/-45/90]S stacking sequence  were 
manufactured using IM6/3501-6 graphite/epoxy 
unidirectional prepreg.  The panels were trimmed 
and cut in half to yield 13.31 cm × 57.15 cm (5.25 
in × 22.5 in) test specimens.  Scarfing of the 
specimens was accomplished with the apparatus 
shown in Figure 1. The apparatus uses a diamond 
bit with a pneumatic grinder that is rotated around a 
2.54cm (1.0in) center hole and translated to provide 
a repeatable scarf cutout.   A 20:1 scarf angle was 
maintained for the specimens.  Additionally, the 
apparatus was used to cut out the scarf patches 
from laminates identical to those of the parent 
specimens. 
 

 
 
Figure 1. Scarfing apparatus 

 
The scarf patches were bonded to the parent 
specimens using Cytec Fiberite’s FM-300M-05 
adhesive cured according to manufacturers 
instructions.  Additionally, a single over-ply 
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extending onto the parent specimen was added to the 
top of the scarf patch to help in load transfer 
between the patch and parent specimen.  The 
adhesive as well as the over-ply were cured using a 
176ºC (350ºF) cure cycle. The specimens were 
instrumented with uniaxial and rosette strain gages 
to monitor the far- field surface strains, the strains 
on the patch over-ply, and strains adjacent to the 
patch on the parent specimen during tensile loading 
of the specimens.  At various plane view locations 
on the specimen, back-to-back (front and back of the 
specimen) gages were mounted to measure localized 
bending strains caused by eccentricity of the 
specimen response. Glass reinforced epoxy tabs 
were bonded to the specimens with EPON 828 
epoxy, a room temperature cure bonding system 
with EPI-CURE 3140 as the hardener.  The tensile 
load was introduced into the specimens in the tab 
region through bolted fixtures.  In addition, 10 
standard tensile specimens of in-plane dimension 
25.4cm by 2.54cm (10 by 1 in) were tested for 
obtaining fiber direction strength properties.  More 
details regarding specimen preparation can be found 
in reference [3]. 
 

3 Strength Prediction 

Spline approximation based 3D ply level analysis 
was used for failure prediction. The plate, adhesive 
and the repair patch models are shown on Figure 2.  
 

 
 
Figure 2. Computational model for the scarfed plate, 
patch and adhesive. 
 
A layer of cohesive interface elements between the 
scarf and adhesive was utilized to model the 

delamination of the adhesive from the parent 
specimen as a function of load. At the same time the 
fiber failure in the scarfed panel was predicted by 
using the critical failure volume (CFV) method 
recently proposed in [4]. The average applied load 
for fiber failure was predicted at each load level 
characterized by a state of delamination in the 
adhesive/scarfed panel interface. Initially, the stress 
distribution in the repaired panel is homogeneous 
and the fiber failure stress predicted is identical to 
that of virgin laminate. The increase of the applied 
load leads to initiation and growth of the 
delamination between the repair patch and the plate. 
The stress distribution in the patch becomes 
nonuniform with the stress concentration typical of 
open hole composites. At some applied load the 
average predicted fiber failure load and the applied 
load become equal. This load value is considered the 
failure load for the repaired panel.  
 
4 Critical Failure Volume Method  
 
The fiber failure load in the scarfed panel was 
predicted by using the CFV method [4]. The critical 
failure region in a quasi-brittle material under 
nonuniform stress state is defined as a finite 
subvolume, which has the highest probability of 
complete loss of load carrying capacity. An 
algorithm is proposed to find such a volume, which 
does not involve a concept of subdivision into mesh 
cells but instead deals with parametric representation 
of the nonuniform stress fields. The probability of 
failure or loss of load carrying capacity in the case 
of uniform stress field is considered to follow a 
Weibull distribution  
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 The assumption, which we will use to evaluate the 
probability of failure in the nonuniformly loaded 
regions, states that eqn. (1) provides a lower bound 
of probability of failure of a specimen with 
nonuniform stress distribution, if the stress in each 
point is higher or equal to σ. Thus the probability of 
failure P of a nonuniformly stressed specimen with 
stress distribution σ(x) can be estimated as  
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The estimate given by eqn. (2) is not very useful 
when applied to the entire volume of the specimen.  
On the other hand, one can select a finite region in 
the nonuniformly loaded specimen, which has a 
volume Vi and minimum stress of σi, and calculate 
the probability of failure for this subvolume f(σi,Vi).  
Suppose that we have found a subregion with 
volume Vc and minimum stress σc, for which this 
probability is the highest, i.e. 

 
 ),(max),( iiicc VfVf σσ = ,  (4) 

where index i scans all subregions of the specimen.  
Then the subregion Vc will have the highest 
probability of local failure, and we will call it critical 
failure volume (CFV).  
 
 We shall now describe an algorithm for 
identification of the CFV and calculation of its 
failure probability fCFV. Denote the magnitude of the 
maximum stress as σm.  Introduce a set of iso-stress 
surfaces qiσm, q0=1>q1>q2>q3…>0.  Consider a 
continuous function v(q), 10 ≤≤ q : 
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This function is equal to the volume of the specimen 
with stress higher or equal to qσm .  The lower bound 
of the probability of failure for these volumes can be 
estimated as f(qσm, v(q)) by using Eqn.(1). The latter 
is a continuous function and its local maximum (if it 
exists) corresponds to the probability of failure of 
CFV   
 

fCFV =
q

max  f(qσm, v(q)). (6) 

 
Denote by qc the value of q for which fCFV=f(qcσm, 
v(qc)) then the respective stress contour  qcσm  
bounds the CFV and its volume will be equal to 
   

Vc= v(qc). (7) 
 

The existence of a meaningful value 0<qc<1 
depends upon both the stress field characteristics as 
well as that of the material. In the present paper, we 
will limit ourselves to finite values of σm . For an 

arbitrary stress distribution, which defines the 
volume function v(q), this function can have 
complex shape. For a typical open hole problem and 
shape function B(σ) in the form of a two parameter 
distribution  
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where α – is the Weibull modulus or shape 
parameter and β is an additional constant, one 
obtains f=0 for q=0 and q=1. This means that the 
function f(qσm, v(q)) will have at least one local 
maximum (f ≥ 0) for  0<q<1.  The fact that f=0 for 
q=1 follows from the premise that the maximum 
stress is attained at a point associated with zero 
volume, i.e. v(1)=0.  
 
5 Physics based limits of CFV 
  
  At the root of the CFV method is 
identification of the most likely failure region by 
finding the value qc and tracing the region bounded 
by the stress value of qcσm and/or evaluating its 
volume Vc. As shown in Ref. [4] this capability 
becomes essential in predicting the fiber failure in 
composite laminates with stress concentrations. In 
particular, it was shown that the linear size of CFV 
defined as  
 

hVl cc /= , 
 
where h is the thickness of the ply,  estimated for 
quasi-isotropic T300/934 laminates with small 
2.54mm diameter holes, was significantly below the 
value of the ineffective length δ introduced by 
Rosen [6].  It is clear that the strength scaling 
parameters in Eqn. (8), which are obtained by testing 
laboratory size specimens are not valid when lc~δ. 
Thus the probability of failure fCFV becomes 
meaningless if Vc (lc) is too small. Suppose that one 
has an estimate of the minimum size volume Vmin for 
which the Weibull scaling in the form (1) and  
(8) is valid. In the case of fiber failure, such limits 
were investigated in Ref. [7] by performing Monte-
Carlo simulation of failure of square cross sections 
of fiber bundles of three different length 3δ, 6δ and 
9δ. A value of lmin=6δ was considered the minimum 
scalable length in their study for fibers with Weibull 
modulus in the range of 10. Although this is higher 
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then the values of 5-6 for typical carbon fibers it can 
be used to estimate Vmin as  

 
Vmin= hl 2

min . (9) 

Having a value of Vmin one can apriori evaluate the 
validity of a fCFV  prediction comparing Vc and Vmin . 
However, more importantly if Vc<Vmin and the value 
of fCFV  is physically inadmissible, one can simply 
obtain another physically admissible estimate of the 
probability of failure by finding the maximum local 
probability of failure of only those subvolumes 
which are larger or equal to Vmin. In other words we 
will replace the definition of CFV given by Eqn. (6) 
by slightly modified one 

  
fCFV =

min)(

max
Vqv

q
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 f(qσm, v(q)). (10) 

 
The practical calculation of a new value of q, say q0, 
such that fCFV=f(q0σm, v(q0)) satisfies Eqn. (10) is 
also straight forward at least in the case when Vmin 
and Vc are both much smaller then the specimen 
volume. In this case q0  is simply calculated by 
solving the equation v(q0)=Vmin. Indeed if qc 
provides an absolute maximum for the function  
f(qσm, v(q)) then the conditional maximum, such that 
v(q) ≥ Vmin will take place at q=q0 as long as the 
function f(qσm, v(q)) is monotonic on the interval 

cqqq ≤≤0 .  
 It might appear that the correction for the 
minimum scalable volume is an issue pertaining to 
the CFV method. On the contrary, this is a problem 
related to material heterogeneity and stress 
concentration in any volumes in which size becomes 
comparable to the scale of the microstructure. It will 
be shown below that the Weibull integral calculated 
in problems when the application of the CFV 
method shows Vc<Vmin gives unacceptably 
conservative strength values due to the fact that most 
of the contribution to the Weibull integral comes 
from the very region Vc.  However, due to its 
integral nature there are no simple modifications to 
solve this problem. The solution proposed by Bazant 
in the 90’s and known as nonlocal Weibull theory 
[8] proposes to first calculate stress averages over 
certain physically dictated characteristic volumes 
such as Vmin and then use these averages in the 
secondary integration of the Weibull integral. Such 
approach clearly addresses the problem at hand, but 

requires considerably more effort for practical 
implementation. 
 
6 3D Stress Analysis and v(q) function calculation 
 
Consider a rectangular orthotropic plate containing a 
throughout circular scarfed hole having a smaller 
diameter d at z=0 and larger diameter D at z=H, as 
shown in Figure 2.  The plate consists of N plies of 
total thickness H in the z-direction and has a length 
L in the x-direction and width A in the y-direction. 
The following displacement boundary conditions 
were applied to the specimen  
 

0)0,,()0,0,0(),,0( === yxuuzyu zyx   
(11) 

 
Traction boundary condition was applied at the x=L 
end, so that  
 

TzyLxx =),,(σ  
 
All other surfaces were traction free. Such mixed 
traction/displacement formulation was utilized to 
combine the mechanical and thermal loading, which 
was used to account for the effect of residual stress.   
The constitutive relations of each ply are as follows: 

 
)( TC p
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p
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where p
ijklC  and p

klα  are elastic moduli and thermal 
expansion coefficients of the pth orthotropic ply, and 
∆T is the temperature change. The average applied 
traction was then calculated as  
 

∫=
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where xc , yc are the coordinates of the center of the 
hole.  
 
 A three-dimensional ply level stress analysis 
in realistic composite laminates containing holes 
represents a formidable problem if using a standard 
finite element programs. A B-spline displacement 
approximation approach developed by Iarve [9] was 
shown to provide highly accurate stress solutions in 
the immediate vicinities of the ply interface and hole 
edge intersections, where there is singular stress 
behavior. 
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  The three-dimensional approximation is 
built by using the tensor product of one-dimensional 
approximations.  Consider an elementary cube [0,1]3 
in local x1, x2, x3 coordinate system, then the 3-D 
displacement approximation can be written as 
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where u is the displacement vector and Ui,j,k are 
vectors of displacement approximation coefficients 
not necessarily associated with nodal displacements, 
and indeces i,j and k in equation (13) change from 1 
to the total number of approximation functions in 
each direction.  Depending upon the application and 
geometry, different orders of splines (from 1 to 8) 
can be used in each direction.  Besides changing the 
order of splines, one can also change their defect 
(maximum number of discontinuous derivatives) in 
the node, thus being able to apply standard linear or 
a higher order p-type finite element approximation if 
desired. Curvilinear coordinate transformation 
x=x(x1 x2 x3), xT=(x,y,z) with Jacobian matrix J (x1 
x2 x3) is used to map the unit volume into the global 
x,y,z, coordinate system. The Gaussian integration 
procedure is used to calculate the components of the 
stiffness matrix.  For purposes of the present study, 
we shall describe the procedure of calculating the 
overstressed volume function v(q). After the solution 
is completed and all vectors Ui,j,k are determined, a 
post-processing step is performed when each 
integration point of the structure is examined twice.  
First the stress and strain components are computed, 
and the maximum value σm of the component of 
interest is found by searching through all integration 
points. A large number M (in our analysis M=101 
and 201) is then prescribed, and a sequence  

qi=  1-i/M, i=0,…,M,  

defined.  The overstressed volume function v(q) 
is then calculated in M points as 
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by using the Heaviside step function 
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In equation (14) indexes gi, i=1,2,3 denote 
Gauss integration points in x1 x2 and x3 
directions, respectively, and wgi are respective 
Gaussian weights. Step function (15) cuts off 
the contribution from all integration points 
where the stress is lower than the threshold 
qiσm. For low values of the threshold value, v(q) 
will include almost all integration points in (14) 
and become close to the entire volume. The 
probability fc is then calculated according to 
equations (10). 
 

7 Results and Discussion 

The unidirectional properties of the IM6/3501-6 
material were as follows: E11=175.27Gpa, 
E22=E33=9.79Gpa, v13= v13=0.33, v23=0.49, 
G12=G13=5.51Gpa and G23=2.96Gpa, with the 
coefficient of thermal expansion of α11=4.10-6C0 and 
α22=32 10-6C0 The Weibull parameters for the 
strength in the fiber direction were equal to 
Xt=2.06Gpa, V0=1638.7mm3 and Weibull modulus 
α=40. The value of the Weibull modulus was taken 
from Wisnom et al. [5]. The lmin =0.266mm was 
calculated according to reference [4]. The initial 
elastic properties of the adhesive were E=3.1Gpa, 
v=0.38 and the thermal expansion coefficient was 
α=0.62.10-6C0. The ply and adhesive thickness were 
h=0.13mm. The temperature change ∆T=-1550C.  At 
low loads prior to the delamination on the 
adhesive/panel interface, the stress field in the 
scarfed panel is quite uniform, as shown on the 
Figure 3. No stress concentration typical of an open 
hole is present. The average fiber failure load is 
predicted equal to that of virgin panels.  

In the case of scarfed open hole panels a severe 
stress concentration typical of  an open hole exists, 
Figure 4.a.  The strength of such panels is about 1/3 
of the virgin panels and is predicted accurately by 
using the CFV method. The experimental and 
theoretical results are shown on Figure 5. In the case 
of repaired panels the stress concentration at 90% of 
the failure load is shown on Figure 4.b. The stress 
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(a) 

 

(b) 

 

Figure 3. Normal σxx stress distribution in the 
adhesive (a) and the scarfed plate prior to any 
delamination on the adhesive/panel interface 

concentration is less severe than in the case of open 
scarfed hole and the predicted strength values of the 
repaired panels are at the level of 2/3 of the intial 
virgin panel strength.  

(a) 

 

(b) 

 
Figure 4. Normal σxx stress distribution in the 
scarfed and repaired panels. Open scarfed hole (a) 
and partially delaminated adhesive at 90% of the 
scarf failure load (b).  
 
Experimental data and predicted strength values for 
small and large size unnotched tensile coupons, as 
well as strength of scarfed open hole and scarfed 
repaired panels are shown on Figure 5. Significant 
reduction in experimentally measured strength of 

large virgin panels as compared to small coupons as 
well as only 5% predicted reduction due to volume 
increase is attributed to grip failure of most large 
virgin specimens. However, the unrepaired and 
repaired scarfed laminates exhibited brittle failure 
through the cavity.  
 

 
Figure 5. Experimental and numerical results 

 
The strength of the repaired panels is strongly 
affected by the amount of failed adhesive. The 
predicted strength values for both cases are close to 
those measured experimentally and overall a good 
agreement is observed. 
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