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Abstract  

The modeling and dynamic response of doubly 
curved functionally graded panels exposed to 
explosive type loads considered in conjunction 
with an uniform through the wall-thickness tem-
perature field are investigated.  Two scenarios, 
symmetric and antisymmetric, continuous dis-
tributions of the two constituent phases, ceramic 
and metal, are considered, in the sense that in 
one of them the composition varies gradually 
from ceramic-to-ceramic, while in the other 
one, from ceramic-to-metal.  The implications of 
the various types of pressure pulses, volume 
fraction exponent, panel curvature, temperature 
amplitude, edge load damping ratio, time-
history transversal deflection are presented, and 
pertinent conclusions are drawn. 
 
 
1 Introduction 

During the last few decades there is a sus-
tained effort toward integrating advanced lami-
nated composites in the construction of aero-
space and reusable flight vehicle.  However, due 
their well-known shortcoming materialized in 
terms of delamination and chemical unstable 
matrix and lamina adhesives, specially at high 
temperatures, new structural paradigms, ena-
bling one to overcome these adverse effects, 
have been prompted.  The advances in function-
ally graded materials (FGMs) prompted in [1], 
that combine the best properties of metals and 
ceramics, and their applications in various areas 
of aerospace structures, see e.g. [2,3], can be 
viewed as an alternative solution for large 
classes of aerospace structures exposed to se-

vere thermomechanical environments. In this 
paper, the foundation of the theory of shallow 
doubly curved shells made from FGMs is pre-
sented, and in addition, the problem of their dy-
namic response to time-dependent loads induced 
by an explosion, sonic-boom or a shock wave is 
addressed. 

 
Their effects, considered in conjunction with 
those induced considered being uniform in 
space and time will be presented.  Pictorial rep-
resentations of the thickness variation of the two 
constituent phases, ceramic and metal, are sup-
plied for the two indicated scenarios in Figs. 1a 
and 1b. 

 
Figure 1a: Thickness distribution of the two 
phases according to scenario a) 

 
at x3 = ± h/2, for any k, V = 1, and as a result 
P(± h/2)⇒ Pc and for x3 =0, V = 0 and P (0) ⇒ 
Pm. 
 
For Case b), the variation of the two phases 
across the wall thickness is depicted in Fig. 1b. 
At ,2/forand)2/(,2/ 33 hxPhPhx m −=⇒=  

and,0,MidsurfacetheAt.)2/( 3 =⇒− xPhP c  
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Figure 1b: The counterpart of Fig. 1 for  
scenario b). 

 

for k=1, ( )mc PPP +=
2
1)0(  

2 Modeling of the FGM Shell Theory 

The points of the shell mid-surface are re-
ferred to the Gaussian coordinates xα, and the 
thickness coordinate, positive in the downward 
direction being denoted as x3.  Based on a sim-
ple rule of mixtures, the following form of the 
variation of mechanical and thermal properties 
in the (thickness) x3 direction is postulated as 

metal3metalceramic3 ),()()( PkxVPPxP +−= (1) 

where P(x3) denotes a generic property of the 
material, in an arbitrary point of the wall struc-
ture, Pceramic and Pmetal are the specific values of 
the respective properties for the two phases, ce-
ramic and metal, while V(x3, k) represents the 
volume fraction of the FGM.   

Now, the problem is to express the variation 
of V according to some pre-determined re-
quirements. 

Two scenarios of the grading of the two basic 
component phases, ceramic and metal, through 
the wall thickness are considered:  

a) In the case of a high temperature field 
at both upper and bottom faces of the 
shell, the phases should vary symmet-
rically through the wall thickness, in 
the sense of having full ceramic at the 
outer surfaces of the shell, and tending 
toward full metal at its mid-surface, 
and 

b) In the case of a high temperature at the 
surface x3 = -h/2, the phases should 
vary non-symmetrically through the 
wall thickness, and in this case, there 
is full ceramic at the outer surface of 
the shell, and full metal at its inner sur-
face. 

In contrast to scenario a) when there is no 
bending-stretching coupling in the constitutive 
equations, in the latter one, such coupling exists, 
and the governing equations become more intri-
cate. 

For scenario a), the proper expression of  
V(x3, k) is  
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where the signum function is given by sgn (0) = 
0, -1 for x3 < 0, and +1 for ;while k, 
termed the volume fraction index, provides the 
material variation profile through the wall 
thickness,

03 >x

( )∞≤≤ k0 . 

For scenario b), the composite varies from ce-
ramic to metal, this implying that, the variation 
of V  through the wall thickness should be repre-
sented as  

( )[ ]khxhkxV 22),( 33 −=   (3) 

A proper solution methodology enabling one to 
determine the structural response due to external 
loadings that are of an explosive-type will be 
addressed in this paper.  The study will provide 
also a better understanding of the dynamic re-
sponse and load carrying capacity of shell-type 
structures composed of functionally graded ma-
terials, with properties varying smoothly and 
continuously across the structural wall thickness 
exposed to explosive, shock-wave, and uniform 
temperature-type loadings. 
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3 Kinematics and Constitutive Equations 

The shell theory considered in this study is a 
refined one, in the sense of the inclusion of 
transverse shear effects coupled with those in-
volving consideration of the ceramic-metal 
FGM materials. 

Based on (5a-c), the 3-D strain field is ex-
pressed in terms of the 2-D counterpart as  

{ } { } { }κεε 3
0 x+=    (4) 
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where (ij i jγ ≠  denote the engineering shear 
strain quantities, and commas denote partial de-
rivatives with respect to the indicated variables. 

Using the equations providing the 2-D stress-
resultants and stress-moments and assuming for 
shallow shells that  one can get their 
expressions as  
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is the shear correction factor.   (6) 

The superscript T denotes transpose operation, 
while [ ] [ ] [ ] [ ], ,  and sA A B D  are the stretching, 

transverse shear, bending-streaching coupling 
and bending stiffness matrices, respectively. For 
FGM, E = E (x3), v = v (x3) and α = α (x3). 

As it clearly appears, these constitutive equa-
tions are valid for the non-symmetric distribu-
tion of constituent phases across the wall thick-
ness.  For the symmetric distribution counter-
part, the bending-stretching coupling becomes 
immaterial, this yielding [B] = 0. 

4 Governing Equations 

Toward getting the governing equations we will 
use Hamilton’s principle formulated as (see e.g. 

( )
1

0

0
t

t

J U W T dtδ δ= − − =∫   (6) 

where t0 and t1 are two arbitrary instants of time, 
U, W and T denoting the strain energy, the work 
done by the surface tractions, edge loads and 
body forces, and the kinetic energy, respec-
tively, while δ the variation operation.  As the 
result of its application from (6) one obtains, 
consistently with Eq. (5), a tenth order govern-
ing systems of partially differential equations, 
expressed in a compact as,  

        ( )5,1, == jipvL ijij     (7) 

where jiij LL =  are 2-D differential operators, 
whose expressions are not supplied here.  

is the displacement 
vector, while p

{ T
j wvuv 21000 ,,,, ψψ= }

i (t) is the thermomechanical load 
vector.  Consistent with the FSDT (First Order 
Shear Deformation Theory, the distribution of 
the 3-D displacement quantities through the 
wall thickness is postulated as: [3] 

1 1 2 3 0 1 2 3 1 1 2
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(8a-c) 
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In these equations Ui are the 3-D displacement 
components along the xi directions; u0, v0, and 
w0 are the 2-D displacement quantities of the 
points of the mid-surface, 1  and 2ψ ψ  are the 
rotations about axes x2  and x1, respectively, and 
t is the time variable. 

{
})(,

,,,

3222111222

111222111

tpRNRNxM

xMxNxNp
TTT

TTTT
i

+−−∂∂

∂∂∂∂∂∂≡

                                                                    (9) 

where the superscript T within the barckets 
identifies the stress-resultant and stress-couples 
generated by the time-independent temperature 
field. while Ri

T
i pp oftransposethedenotes 1 

and R2 denote the radii of curvature. 

4 Thermal Blast Loads  

The thermal field ΔT measured from a stress-free 
reference temperature T0 is considered to be time 
and space independent.   

Consistent with the Navier Solution to be adopted in 
the solution of the present boundary-value problem, 
we represent ΔT as   

∑
∞
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which from one obtains that  
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For the thermal stress-results NT and stress cou-
ples MT associated with the FGM, one can use 
the same representation as for ΔT, that is  
 

1 2
, 1

1 2
, 1

sin , ,sin ,

sin , ,sin ,

T T
mn m n

n m

T T
mn m n

n m

N N x

M M x

λ μ

λ μ

∞

=

∞

=

=

=

∑

∑

 
Using the definition of NT and MT one gets the 
expressions of their amplitudes as  
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Consistent with the distribution of the material 
properties in the FGM, one obtains, with Sce-
nario a): 
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while for Scenario b): 
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where, mccmmccm EEE ααα −=−= , ,while the 
coefficients and S

ij ij
aI I  are geometrical quantities 

associated with the symmetrical or the asymmet-
rical shells. 
 
As concerns the blast loads, these can be gener-
ated by an explosion or by shock-wave distur-
bances produced by an aircraft flying at super-
sonic speeds, or by any supersonic projectile, 
rocket or missile operating in its vicinity. 
 
In the latter case, the blast pulse is referred to as 
sonic-boom.  Its time-history is described as an 
N-shape pulse, featuring both a positive and a 
negative phase.  Having in view the large blast 
front generated by the explosion as compared to 
the relatively small dimensions of the panel, one 
assumes with sufficient accuracy that the pres-

x
 (11) 
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sure is uniform over the entire panel that is im-
pacted at normal incidence. 
 
The sonic-boom overpressure can be expressed 
as follows (see e.g. Librescu and Nosier 
(1990)), 
 

0
3

p

(1 / )   for 0
( )

        0           for t < 0 and t >  rt
p pP t t t rt

p t
− < <⎧⎪= ⎨

⎪⎩
(14) 

 
where P0 denotes the peak reflected pressure in 
excess to the ambient one, tp denotes the posi-
tive phase duration of the pulse measured from 
the time of impact of the structure, and r de-
notes the shock pulse length factor. 
 
For r = 1, the sonic-boom degenerates into a 
triangular explosive pulse, for r = 2, a symmet-
ric sonic-boom pulse is obtained while r ≠ 2 
corresponds to a nonsymmetric N-pulse.  When 
r = 1 and tp → ∞, in Eq. (14) the N-pulse degen-
erates in a step pulse. 
 
A more complete expression of the explosive 
blast pulse as compared to the triangular one is 
described by the Friedländer exponential decay 
equation as 
 

/
3 0( ) 1 .pa t t

p

tp t P e
t

′−⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
  (15) 

 
where the negative phase of the blast is in-
cluded.  In Eq. (15) a′ denotes a decay parame-
ter which has to be adjusted to approximate the 
pressure curve from the blast test.  As it could 
be inferred, the triangular explosive load may be 
viewed as a limiting case of Eq. (18), that is for 

. / 0pa t′ →
 
Having in view that Laplace transform method 
will be used to determine the dynamic response, 
it is appropriate to express Eq. (16) equivalently 
(see Marzocca et al. (2001), as 
 

3 0( ) 1 ( ) ( ) ,p
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where H(t) denotes the Heaviside step function. 
As special cases of Eq. (16), the rectangular and 
step pressure pulses can be obtained.  In the 
former case 
 

{ }3 0( ) ( ) ( ) ,pp t P H t H t t= − −   (17a) 
 
while for the latter one 
 

3 0( )  for 0.p t P t= ∀ >    (17b) 
 
The sine pulse that will also be considered in the 
numerical simulations, is represented as 
 

0
3

sin /   0  
( )

         0              > 
p

p

P t t t
p t

t t

π ≤ ≤⎧⎪
⎨
⎪⎩

pt

1

 (18) 

 
Finally, in the case of an air-blast traveling in 
the tangential direction to the panel span, case 
that will also be considered, the pressure time-
history is represented as 
 

1( )
3 0( ) ( ),ct xp t P e H ct xη− −= −   (19) 

 
where c is the wave speed in the medium sur-
rounding the structure, while η is an exponent 
determining the character of the blast decay. 
 
For a recent study regarding the modeling of 
gun blast pressure pulses, the reader is referred 
to Kim and Han (2006). 
 

5 Solution Methodology  

An exact solution that can be viewed as an ex-
tenion of the Navier type solution will be 
adopted.  It corresponds to the case of the sim-
ply supported SSI type boundary condition im-
plying that on x1 = 0, L1: v0 = 0; w0 = 0; ψ2 = 
0; N11 = M11 = 0 and on x2 = 0, l2 u0 = 0; w0 
=0; ψ1 = 0, N22 = M22 = 0.  As is clearly seen, 
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the SS1-type involves completely moveable 
edges in the tangential direction. 
 
The solution associated with each displacement 
unknown is represented as the superposition of 
two parts a quasi-static and a small dynamic 
part expressed as  
 

1 2 1 2 1 2( , , ) ( , ) ( , , )s dV x x t V x x V x x t= +      (20) 
 
where V denotes a generic displacement quan-
tity. 
 
The boundary conditions are identically fulfilled 
by expressing the displacement quantities as  
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Consistent with the previous Navier-type repre-
sentations, we express    

 p3 (t) = 1 2
, 1

( )sin sinmn m n
m n

Q t x xλ μ
∞

=
∑  

 
 where from one gets  
 

,...)5,3,1,()(16
32 == nmtp

mn
Qmn

π
     (22) 

 
where p3 (t) corresponds to the particular case of 
blast.  Whereas VS can be determined by using 
the representation of Eqs. (21) of displacement 
quantities in the governing equations specialized 
for the case of zero inertia and a zero transversal 
load term related with the explosive load. Simil-
iarly, Vd can be determined from the governing 

equations by keeping the damping and inertia 
terms as well as the transversal dynamic load 
term, and discarding in the boundary conditions 
the thermal terms. 
 
6 Numerical Simulations 
 
The following data for the panel geometry and 
material properties of constituent material phas-
es are considered in the numerical simulations 
 

Table 1.  Material Properties 
 Metal 

(Aluminum) 
Ceramic 

(Alumina) 
E, Modulus (GPa) 70 393 
υ, Poisson’s Ratio (Unitless) 0.3 0.25 
ρ, Density (Kg/m3) 2707 3970 
α, Coeff. of Thermal Exp. (/ °C) 23 × 10-6 8.8 × 10-6

Cv, Specific Heat (J/Kg-°K) 900 268 
kT, Thermal Cond. (W/m-K) 204 10.4 
κ, Thermal Diffusivity (m2/s)    8.373 × 10-5 9.783 × 10-6

(L1 = L2 = 0.2m, h = 0.004m) 
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Fig. 1.  Center deflection time-history of a FGM 
spherical cap subjected to an explosive blast, for 
various values of k. 

 
Fig. 2.  Counterpart of Fig. 1 for the case of a 
traveling shock wave. 

 
Fig. 3.  Effects of the symmetry/asymmetry of 
phase distribution on the dynamic deflection 
time-history of a flat panel subjected to a trian-
gular explosive blast. 

 
Fig. 4.  Effects of the symmetry/asymmetry of 
phase distribution on the dynamic deflection 
time-history of a flat panel subjected to an ex-
plosive blast and of a uniform temperature (ΔT 
= 1500°C). 

 
Fig. 5.  Effects of the volume fraction exponent 
on the dynamic response of circular cylindrical 
panel subjected to an explosive blast, a uniform 
temperature field (ΔT = 1500°C) and a compres-
sive edge load. 
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