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Abstract  

A vehicle’s vibration response contains 
information about the vehicle’s structure and the 
environment that it is used in. This information is 
useful for diagnosing the structural health of a 
vehicle. To monitor the vehicle’s vibration response, 
we used the PVDF sensor attached to the frame of a 
vehicle. Then A highly accurate technique for 
detecting and analyzing structural changes is thus 
required. So we investigate and evaluate the Support 
Vector Machines method, which is based on a 
statistical technique, by using it to diagnose 
structural health by applying the technique to the 
vibration response of vehicles. 
 
 
1 Introduction 

To prevent serious accidents involving 
mechanical structures, it is important to detect 
structural changes early. These structural changes 
are indicative of damage or functional deterioration. 
Because they are used in various situations and 
under various conditions, many mechanical 
structures have complex deterioration and wearing 
processes, and their working loads have probabilistic 
and statistical properties. Since it is difficult to 
accurately predict the occurrence of deterioration or 
failure, it is necessary to continually monitor 
structures during their use to detect any structural 
changes at an early stage. 

Structural health monitoring is used for this 
purpose. In structural health monitoring, the 
response signals from sensors built into a structure 
are used to monitor the condition of the structure. 
When strain, vibration, sound, and infrared sensors 
are used for monitoring real structures, they are 
generally affected by environmental and load 
changes, often resulting in a nonlinear relationship 
between phenomena and the response signals. Since 

the response signals from a vehicle-like structure 
that continually experiences vibration contain 
information about the vehicle’s operating conditions 
and environment, a highly accurate technique for 
monitoring and analyzing the vehicle’s structure is 
required to interpret changes in the response signal 
accurately. 

In order to predict the occurrence of 
phenomena, we need to create a model that relates 
the response signals to the phenomena. Strong 
generalization capabilities are required for highly 
accurate predictions. General learning tools can be 
used for modeling. The learning processes employed 
by these techniques enable the creation of a 
complicated nonlinear model, but they require 
defining the various learning parameters 
appropriately. Even a model capable of classifying 
learning data correctly may yield only a local 
solution. In order to obtain a model that has great 
generalizability, the learning parameters must be 
determined by trial and error. 

In this study, therefore, we apply the Support 
Vector Machines (SVM) method, which uses a 
statistical technique for learning and estimating, to 
structural health diagnosis. Since the method for 
creating a model of great generalizability based on 
the theory of statistical learning is clearly an 
optimization problem, SVM is expected to allow 
highly accurate prediction of phenomena. We 
investigate and evaluate SVM by applying it to the 
vibration response, which is dependent on various 
factors, and using it to diagnose the structural health 
of a vehicle. 
2 Health Monitoring of a Vehicle 

Figure 1 shows the vehicle monitoring system 
we developed. 

Health diagnosis was conducted on the 
compact electric car shown in Figure 2. A 
piezoelectric polymer sensor was attached to the 
support frame of the right front wheel of this vehicle 
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to monitor the vibration response while it was 
running. 

 

Fig. 1. Schematic diagram of vehicle 
monitoring system 

 
 
 
 
 
 
 
 
 

 
 

Fig. 2. The experimental vehicle and the sensor 
 
The piezoelectric polymer sensor was a 

differential sensor made of polyvinylidene fluoride, 
which is a piezoelectric material. This sensor was 
employed to detect changes in the vibration response 
to a high degree of accuracy. Signals from this 
sensor were processed by an amplifier and an AD 
converter and collected by an onboard PC. 

The vibration response waveform was 
processed to extract useful information for 
predicting phenomena. The signal processing 
method used was discrete wavelet transform (DWT), 
which is capable of efficient extraction of features 
from vibration response waveforms. 

Using SVM learning, we created a 
discrimination unit for detecting phenomena from 
several data sets containing the feature amounts and 
the corresponding value for the phenomenon. The 
feature amounts from the vibration response 

waveforms collected at diagnosis were entered into 
the discrimination unit, and the phenomenon output 
values were then used to ascertain the vehicle 
conditions and the environment in which it was used. 

 The signal processing and the SVM 
discrimination were conducted by the onboard PC, 
and the results of diagnosis were transmitted to a 
remote server via a wireless TCP/IP network. 

Fig. 3. Procedure of the vehicle health diagnosis 
 

3 SVM 
The Support Vector Machine is a linear 

discrimination unit of the perceptron type, and its 
indicator function ( )if x  is defined in terms of the 
feature amount vector ix  as follows: 

 
( ) bf i

T
i += xwx    (1) 

 
where w  is the weight vector, and b  is a bias 

term. Setting iy  as the class to which the feature 
amount vector belongs, the equation can be 
expressed using the following threshold function: 

 
{ }by i

T
i += xwsign   { }1,1−∈iy  (2) 
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Learning is used to determine the boundary of 
the classes. SVM is a typical method to determine 
the boundary. 

Suppose that data belonging to Classes A and 
B are distributed in n-dimensional space. In SVM, 
the minimum distance between the data of the two 
classes is called the margin, and the n-1-dimensional 
hyperplane where the margin is a maximum is found. 
At the center, a separating hyperplane is placed as a 
boundary between the two classes.  

Fig. 4. The separating hyperplane of SVM 
 
This is based on the structural risk 

minimization technique [1], which reduces the 
discrimination error rate of not only the learning 
data but also unknown data. Figure 4 shows an 
example where data is distributed in two-
dimensional space, so that the feature vectors are 
two-dimensional. The separating hyperplane is thus 
linear, and a sample located on the broken line at the 
margin boundary is called a sample vector. 

The margin size is given by w/1 , and the 
determination of the separating plane becomes the 
quadratic programming problem expressed in 
Equation (3). Classifying the learning data correctly 
under restrictive conditions optimizes the weight 
vector w  where the margin is maximized: 

 

( ) 1   subject to

   minimize 2

≥+ by i
T

i xw

w
.  (3) 

 
The Support Vector Machine is initially a 

linear discrimination unit but it can be extended to a 
nonlinear discrimination unit using a technique 
known as the kernel trick. The kernel trick maps 
features from the input space of the discrimination 
unit where the features exist to a higher-dimension 

feature space which has linear dimensions in the 
feature space rather than nonlinear dimensions. 
Kernel functions are used for mapping the feature 
space. The following kernel functions were used: 

 
( ) i

T
iK xxxx =,     (4) 

 
( ) ( )i

T
iK xxxx tanh, =    (5) 

 
( ) ( )2exp, iiK xxxx −−=   (6) 

 
Equation (4) represents a polynomial kernel, 

Equation (5) represents a sigmoid kernel, and 
Equation (6) represents a Gaussian kernel. 

Nonlinear discrimination using the kernel trick 
substitutes the feature vector ix  in Equations (2) 
and (3) with the kernel function ( )iK xx,  as 
follows: 

 
( ){ }bKsigny i

T
i += xxw ,  ( )1,1 −∈iy  (7) 

 

( )( ) 1,   subject to

   minimize 2

≥+ bKy i
T

i xxw

w
 (8) 

 

4 Health Diagnosis Experiment 

4.1 Diagnosing the Air Pressure of the Tire 

The vibration response is the displacement of 
the road surface when the vehicle is being driven 
and is transmitted to the vehicle chassis through the 
tires. Therefore, the tire characteristics can be 
considered as one factor which always affects the 
vibration response of the vehicle. The damping 
characteristics of the tires are affected by the air 
pressure in the tires. A low air pressure may cause a 
standing wave phenomenon that could result in the 
tires blowing out. In this study, therefore, we 
decided to evaluate the SVM-based structural health 
diagnosis of the vehicle structure by diagnosing the 
air pressure of the tires from the vibration response. 
This leads to sequential diagnosis that identifies 
phenomena by successively collating various factors 
that affect the vibration response. 

The vibration response waveform data was 
obtained from the vehicle shown in Figure 2, which 
was run under the experimental conditions given in 
Table 1. 
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Table 1. Experimental conditions 
Speed 20 km/h 

Road surface Asphalt 

Tire air pressure 130, 110, 90, 70, 50, 
30 kPa 

Sampling frequency 1 kHz 
 
The recommended tire air pressure of the 

vehicle was 130 kPa. The air pressure of the right 
front tire was set to the recommended pressure or 
five lower pressures. 
4.2 Vehicle Vibration Response  

Figure 5 shows the vibration response 
waveforms at the air pressures of 130, 110, and 90 
kPa. It is difficult to identify differences in the 
vibration responses from the initial waveforms. To 
make these features clearer, we extracted features 
using DWT. For DWT, the fifth mother wavelet of 
the most efficient feature extracted from the vehicle 
vibration response was selected from highly general 
Daubechies as a basis function for facilitating 
analysis of local vibration changes. Decomposition 
by DWT was performed in five pseudo-frequency 
bands, namely D1 (500 to 333 Hz), D2 (333 to 167 
Hz), D3 (167 to 83 Hz), D4 (83 to 42 Hz), and D5 
(41 Hz to 21Hz). Figure 6 shows the DWT 
processed waveform of the vibration response 
obtained at an air pressure of 130 kPa. 

 
 
 
 
 
 
 

130kPa 
 
 
 
 
 

110kPa 
 
 
 
 
 

90kPa 
 

Fig. 5. The time-domain response in the driving test 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 

Fig. 6. The DWT-processed waveform of the 
vibration response (at 130 kPa) 

 
4.3 SVM Application  

As explained above, the features were 
extracted from the vibration response waveforms, 
and the air pressures of tires were distinguished by 
using the amplitudes of the pseudo-frequency bands 
from D1 to D5. Since SVM basically evaluates one 
status using one discrimination unit, we created one 
discrimination unit for each of the six air pressure 
levels and evaluated the discrimination performance. 

The amplitude obtained by DWT analysis from 
the vibration response that is the input signal to the 
discrimination unit always varies, as shown in 
Figure 5. The square means of the fixed continuous 
times were calculated using Equation (9) for D1 to 
D5 and used as the components   of the feature 
vector: 

 

( )( ) ( )mkd
n

x
nt

tj

j
kk ,,2,11 0

0

2
K== ∑

+

=

　　     (10) 

 
where ( )j

kd  is the amplitude at each sampling point, 
and n  is the number of sampling points for the 
square mean or the measurement time required for 
obtaining the feature amount. 
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The length of time used in the feature amount 
calculation may affect the discrimination 
performance. We therefore investigated changes in 
the feature amount discrimination performance of 
the discrimination unit for the recommended air 
pressure level of 130 kPa when the number of 
sampling points was n  (see Figure 7). 
 

Fig. 7. The recognition accuracy versus number of 
samples 

 
The discrimination unit was created from 120 

items of randomly selected learning data. There 
were 60 positive data items corresponding to the 
recommended pressure and 60 negative items that 
did not correspond to the recommended pressure. 
The polynomial kernel in Equation (4) was used. To 
evaluate the discrimination performance, 70 items of 
test data were randomly selected for each air 
pressure level from 130 to 30 kPa. 

The discrimination accuracy generally 
improved with larger numbers of sampling points 
and reached a peak of 98% or more when the 
number of sampling points was 20 to 24. Also, from 
the viewpoint of having a small calculation volume 
for diagnosis, it is preferable to reduce the number 
of sampling points. On this basis,   was set to 20 in 
Equation (10) for the feature amount calculation in 
the subsequent air pressure diagnosis of the tires. 
This corresponds to a measurement time of 20 ms. 

By using the method described above, we also 
created discrimination units for air pressure levels 
other than the recommended one and diagnosed the 
air pressure. Figure 8 shows the results. The 
discrimination accuracy was 99% for the 
discrimination unit whose prescribed pressure was 
130 kPa. Initial changes of 15% to 30% lower than 
the recommended pressure, which are difficult for a 
driver to detect, can be detected with high accuracy. 
 

 

 
 
 
 
 
 
 

 
 
 
 

 
Fig. 8. The recognition accuracy using SVM with 

polynomial kernel 
 

4.4 Detecting the Loosened Bolts 

Then we evaluate the structural health 
diagnosis of the vehicle structure by detecting the 
loosened bolts joint a tire-wheel to a hub from the 
vibration response. Figure 9 shows the bolts and 
table 2 shows the experimental conditions. 
 

  
Fig. 9. The bolts joint a tire-wheel to a hab 

 
Table 2. Experimental conditions 
Speed 20km/h 

Road surface Asphalt 
Sampling frequency 1kHz 

State of the bolts 

Normal 
One bolt is loosened 

Two bolts are loosened 
Three bolts are loosened

 
Figure 11 shows the time domain response in 

the driving test and the DWT-processed waveform 
of the vibration response when three bolts are 
loosened. Cyclical fluctuations appear in the DWT-
processed waveform. 

Then we created discrimination units for each 
states of the bolts and diagnosed. The discrimination 
unit was created from 60 items of randomly selected 
learning data. There were 30 positive data items and 
30 negative items. Table 3 shows the results. 



AKIHISA TABATA, Yoshio Aoki  

6 

Fig.10. The waveform of the vibration response 
(normal state) 

 

 Fig.11. The waveform of the vibration response 
(three bolts are loosened) 

 
 

 
Table 3. The recognition accuracy 

    Learned discrimination unit 

    Normal 1bolt 
2 

bolts

3 

bolts

Normal 1 0.58 1 1 

1 bolt 0.63 1 1 1 

2 bolts 1 1 1 1 

Test 

pattern 

of the 

response 

vibration
3 bolts 1 1 1 1 

 
More than two bolts are loosened, the 

looseness of the joint can be diagnosed. 
 

5 Conclusions  
In this study, we use a PVDF sensor to monitor 

the vibration response transmitted through a vehicle 
chassis while it was running. A PVDF sensor is 
sensitive to fluctuations of the vibration response. 
We investigated a method for extracting feature 
vectors for SVM from vibration response waveforms 
after wavelet transformation to establish a technique 
for diagnosing the structural health of a vehicle by 
using SVM. The tire air pressure could be detected 
from the vibration response. Also the loosend bolts 
join a wheel to a hub could be detected from the 
response vibration. 
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