

IN-SITU REACTION SYNTHEIS AND MECHANICAL PROPERTIES OF ULTRA HIGH TEMPERTURE CERAMICS

Changqing Hong*, Xinghong Zhang*, Qiang Qu*, Jiecai Han*, Songhe Meng* *Center for Composite Materials, Harbin Institute of Technology, Harbin, 150001, China

Keywords: UHTCs; in-situ synthesis; ZrB₂-SiC; mechanical properties

Abstract

ZrB₂-SiC ultra high temperature ceramics were prepared by a mixture of zirconium, silicon, and B_4C with various molar ratios via in-situ reactive hot pressing at temperature (1900 \mathcal{C}) for 60min under 30 MPa in vacuum. Experimental analysis revealed that the ZrB₂-SiC composite through in-situ reaction synthesis exhibited higher flexural strength and fracture toughness. The sinterability and densification properties of ZrB₂-based UHTCs increased as the amount of Si increased, however many large ZrB_2 agglomerates formed when the amount of synthesized SiC in the product reached 25vol%, which led to decrease the mechanical property. Moreover the SEM result indicates that the distributions of the in situ formed ZrB₂, SiC, and ZrC phases in the composite are not homogenous.

1 Introduction

Future reentry space vehicles will need better maneuverability to improve safety and performance. Vehicles with sharp leading edges, as opposed to the blunt nose and leading edges on the current space shuttle can provide improved lift-to-drag and thus improved maneuverability [1-5].

 ZrB_2 and HfB_2 composites containing SiC are known to have good thermal shock and configurational stability at elevated temperatures. These are promising ultra-high temperature ceramics (UHTCs) for use on the sharp leading edges of next generation space vehicles [6, 7]. Sharp leading edges on these vehicles will need to withstand repeated exposures to temperatures greater than 2200°C in oxidizing environments have good thermal shock and ablation resistance and withstand the mechanical stress of launch and reentry. The potential for ZrB_2 (HfB₂)-SiC composites to meet the requirements of hypersonic flight depends on controlling processing techniques [8-10].

For most of the reported studies, ceramic composites have been fabricated simply by hot pressing from commercially available powders. Reactive hot pressing (RHP) is an alternative route. It can produce materials with novel and controlled microstructures, with high chemical compatibility of the in situ formed individual phases, and phase distribution uniformity

This presentation will focus on understanding processing method to optimize the material properties of ZrB₂-SiC composites for the application in ultra high temperature environment. The correlation between *in situ* reaction processing techniques, microstructure and mechanical properties will be investigated.

2 Experimental procedure

For zirconium boride-containing UHTCs, a high-strength ZrB_2 -SiC composite can be prepared by reactive hot pressing processing from a mixture of Zr, Si and B₄C according to reaction(1) as following:

$$2Zr + B_4C + Si \rightarrow 2ZrB_2 + SiC \tag{1}$$

$$xZr + yB_4C + (3y - x)Si \rightarrow 2yZrB_2 + (x - 2y)ZrC + (3y - x)SiC$$
(2)

The existence of ZrC to ZrB_2 -SiC to form a ternary composite of ZrB_2 -SiC-ZrC can tailor the microstructure and properties of ZrB_2 -SiC, especially the superior resistance to fracture and strength at a high temperature. In this work, a composite in the ZrB_2-SiC-ZrC system was prepared by reactive hot pressing, using Zr, Si and B₄C as starting powders.

When x = 2 and y = 1, reaction (2) reduces to reaction (1). In the present work, we took different variation value based on calculations for maintaining

the volume content of SiC at 10%, 15%, 20%, 25%. The calculated volumetric composition is shown in Table.1. The reactions are thermodynamically favorable and exothermic. In this communication, the samples were produced under relatively mild conditions (1900°C), and the detailed preparing process is shown in Fig.1.

Fig.1 Curve of sintering temperature (T) and pressure (P) versus sintering time during in-situ reaction

The microstructure of ZrB₂-SiC composite was studied by scanning electron microscopy (SEM). Crystal-phase identification of the synthesized sample was determined by X-ray diffractometry (XRD) with Ni filtered CuK a radiation (0.1542 nm). Flexural strengths were measured with three-point bending tests (sample size = $30 \times 3 \times 4$ mm and span = 20mm) at a crosshead speed of 0.5 mm/min. Loaddisplacement curves were recorded by attaching strain gauges to the specimen tensile surface. Fracture toughness was evaluated using single-edge notched bend (SENB) beams (2×4×20 mm, notch depth and radius of 2 mm and 0.2 mm, respectively) with a span of 16 mm and a crosshead speed of 0.05 mm/min. The bulk density was measured using the Archimedes method.

Table.1 Volume percentage of each phase in the samples

in the samples				
	Volume content Of crystalline phase			
Sample				
	ZrB ₂	ZrC	SiC	
ZrB ₂ -10vol%SiC	72.07	17.93	10	
ZrB ₂ -15vol%SiC	72.97	12.03	15	
ZrB ₂ -20vol%SiC	73.86	6.14	20	
ZrB ₂ -25vol%SiC	74.76	0.24	25	

3 Results and discussion

According to the XRD patterns of the reactive hot-pressed ZrB₂-20vol%SiC composite at 1900 $^{\circ}$ C and 1600 $^{\circ}$ C as shown in Fig.1.

There are no other phases occur, and the phases present in the composites agree with those predicted from reactions (1) and (2). This observation means that either ZrB_2 -SiC-ZrC can be produced by in situ reaction.

Fig.2 X-ray diffractometry patterns of the reactive hot-pressed ZrB₂-20vol%SiC composite at 1900°C and 1600°C.

3.2 Base microstructure

The microstructure of ZrB_2 -SiC-ZrC composite with different SiC content is shown in Fig.2 (a)-(d). This picture indicates that the distributions of the in situ formed ZrB_2 , SiC, and ZrC phases in the composite are homogenous when the Si content is low.

The particle size of SiC and ZrC is similar and generally small, about $1\sim3$ um, whereas that of ZrB₂ is large, which is about $4\sim10$ um. SiC and ZrC grains are mainly located at the ZrB₂ grain boundaries. However the ZrB₂ particles were agglomerated and not homogenous when the SiC content exceeds 20%(shown in Fig.2(d)).

IN-SITU REACTION SYNTHESIS AND MECHANICAL PROPERTIES OF ULTRA HIGH TEMPERATURE CERAMICS

Fig.3 SEM of polished surfaces of the in situ reactive hot-pressed composite with the different
SiC content. The gray phase is ZrB₂, the dark phase is SiC, and the white phase is ZrC.
(a)10vol%;(b)15vol%;(c)20vol%;(d)25vol%

The possible reasons for this are attributed to the fact that the SiC phase is formed from ZrC. It is assumed that B and C atoms from B_4C diffuse faster than Zr and Si. Moreover, Si has a lower reactivity than Zr, so the ZrB₂ and ZrC phase formed before

any Si compounds [11, 12]. Especially at higher temperatures, SiC formed *in situ* as a result of the reaction between Si, ZrC, and the residual B_4C . Therefore the regions rich in SiC are poor in ZrC.

From Fig. 4, it can be seen that the ZrB_2 grains surrounded by SiC are finer than those not surrounded by SiC. On the other hand, the existence of ZrC seems to promote the growth of the ZrB_2 platelets, and this should have improved the fracture toughness of the composite.

Fig. 4.SEM images of a polished surface of the reactive hot-pressed composite. The gray phase is ZrB₂, the dark phase is SiC, and the white phase is ZrC.

Fig.5 Fracture morphology of ZrB₂-20SiC composite

The general configuration of the microstructure (shown in Fig.5) presents regularly faceted and plateleted ZrB_2 grains and intergranular SiC and ZrC particulates. The fracture mode is chiefly intergranular even if, in correspondence with the largest grains, intragranular events seem to prevail.

The debonding of ZrB_2/ZrB_2 and ZrB_2/SiC interfaces is also observed.

3.3 Mechanical properties

The measured relative density is over 100% in ZrB_2 -20SiC and ZrB_2 -25SiC samples and reaches 90.9% and 96.8% for ZrB_2 -10SiC and ZrB_2 -15SiC composite respectively. The relative density of the ZrB_2 -SiC-ZrC composite was higher than that of the ZrC-free composite. This indicates that the presence of ZrC improves the densification of the material, even though the reactants of the four systems are similar.

The flexural strength and fracture toughness of the prepared composites are listed in the Table 2. The mechanical properties of ZrB₂-20vol%SiC is obviously higher than the others due to the finer columnar ZrB₂ grains and the homogeneous distribution of SiC and ZrC particulates. The cracks will propagate through intergranular rather than intragranular and consume more energy before fracture, and the columnar ZrB₂ grains also have a bridging effect between grains. All the factors above can improve the flexural strength and fracture toughness effectively. The fracture toughness is higher than the most literature reported due to the higher sintering temperature and good densification characterization of the sintered product. The flexural strength and fracture toughness of ZrB₂-10%SiC and ZrB₂-15vol% SiC are relative lower, which is relevant to the existing pores retained in the products. For ZrB₂-25vol% SiC composite, many large ZrB₂ agglomerates and thus inhomogeneous SiC particles may lead to the intragranular cracks which will deteriorate the mechanical properties.

Table.2 Mechanical properties of the in situ
synthesized ZrB ₂ -SiC-ZrC composite

property Sample	Flexual strength (Mpa)	Fracture toughness (MPa·m ^{1/2})
ZrB ₂ -10vol%SiC	405.5±65	4.19±0.07
ZrB ₂ -15vol%SiC	338.5±25	3.95±0.43
ZrB ₂ -20vol%SiC	645.8±35	5.66±0.40
ZrB ₂ -25vol%SiC	384.5±75	4.41±0.60

* 1- ZrB₂-20vol%SiC;

- 2- ZrB₂-20vol%SiC;
- 3 ZrB_2 +20v ol%SiC+4vol%Si₃N₄;
- 4 ZrB₂+15vol%SiC+4.5vol%ZrN;
- 5 ZrB_2 +20vol%SiC+6.14vol%ZrC

Acknowledgement

This work was supported by the program for NCET and the National Natural Science Foundation of China (Project No. 50602010 and No. 90505015).

References

- Levine SR., Opila EJ, and Salem JA. "Evaluation of Ultra-high Temperature Ceramics for Aeropropulsion Use". J.Euro.Ceram.Soc, Vol.22, pp 2757-67, 2002
- [2] ZHANG GJ., OHJI T. "In Situ Reaction Synthesis of Silicon Carbide-Boron Nitride Composites". J. Amer. Ceram. Soc, Vol.48, No.7, pp 1475-1479, 2001
- [3] Monteverde F., Guicciardi S, and Bellosi A. "Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics". Mater.Sci.Eng.A, Vol.A346, pp 310-319, 2003
- [4] Monteverde F., Bellosi A. "Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates". Solid State Sciences, Vol.7, pp 622-630, 2005
- [5] Hodulak L, Blauel JG, Siegele D. and Urich B. "Thermal shock experiments on cracked cladded plates". Nuclear Engineering and Design. Vol.188, pp 139~147, 1999
- [6] Chamberlain A, Fahrenholtz W, Hilmas G. and Ellerby D. "Oxidation of ZrB₂-SiC Ceramics Under Atmosphericand Reentry Conditions". Refractories Applications Transactions, Vol.7, pp 2-8, 2005.
- [7] Monteverde F, Bellosi A. "Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride". Scripta Materialia . Vol.46, pp 223~228, 2002
- [8] Tsuchida T, Yamamoto S. "Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB₂ in air from Zr/B/C powder mixtures". Journal of the European Ceramic Society Vol.24, pp 45-51, 2004
- [9] Gasch M, Ellerby D, Irby E, Beckman S. and Gusman M. "Processing, Properties and Arc Jet Oxidation of Hafnium Diboride/silicon Carbide Ultra High Temperature Ceramics". Journal of Materials Science. Vol.39, pp 5925-5937, 2004
- [10] Opeka MM, Talmy IG. and Zaykoskl JA. "Oxidation-based Materials Selection for 2000°C Hypersonic Aerosurfaces: theoretical Considerations and Historical Experience". Journal of Materials Science. Vol.39, pp 5887-5904, 2004
- [11]Zhang GJ, Deng ZY. and Kondo N. "Reactive hot pressing of ZrB₂-SiC composites". J.Am. Ceram. Soc, Vol.83, pp 2330-2334, 2000
- [12] Fahrenholtz WG. "Reactive processing in Ceramicbased systems". Int.J.Appl. Ceram. Technol. Vol. 3, pp 1-12, 2006