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Abstract 

The influence of radius variation on the dry 
bundle behaviour of brittle fibres was analysed 
using a Monte Carlo procedure. Unlike previous 
researchers, the present work obtained the strength 
of individual fibres directly from the flaw population 
assumed to be present on the fibre surface. The 
“tails” of the normalised load-displacement curves 
were noted to increase in magnitude as the radius 
variation increased whilst the fraction of fibres that 
failed at maximum load (0.201~0.204) was 
approximately 10% lower than expected from 
standard theory and noted to decrease slightly as the 
radius variation increased. Fibre radius 
distributions taken from the initial random selection 
of radii, and then at the point of maximum load, 
indicated the preferred failure of larger radius 
fibres; this effect was attributed to the larger 
number of flaws present on the surface of larger 
radius fibres. 

 
 
 

1  Introduction  

The requirement for lightweight structural 
materials in space and aerospace applications above 
1200 oC has led to the development of advanced 
monolithic ceramics such as silicon carbide (SiC) 
and silicon nitride (Si3N4). Whilst they possess many 
advantages compared to lightweight superalloys, a 
serious disadvantage of monolithic ceramics is their 
relatively low fracture toughness, KIC, when 
compared to that of most alloys (typically >100 
MPa·m1/2). For example, the fracture toughness of 
monolithic SiC is typically 1∼3 MPa·m1/2 whilst that 
of Si3N4 containing elongated β grains may reach 
10∼15 MPa·m1/2.  

One method to overcome this low fracture 
toughness (and associated brittle fracture behaviour 
and low reliability) has been through the 
introduction of ceramic matrix composites (CMCs), 
in which ceramic particles, whiskers, or fibres are 
incorporated into a ceramic matrix. For example, the 
incorporation of 30 mass% of chopped Tyranno® Si-
Al-C (SA) fibres (mean length: 394 μm) increased 
the fracture toughness of monolithic SiC from 2.6 

Table 1.  Radius variation data for ceramic fibres based on the silicon carbide system. 
 

Fibre type
Investigated 

fibre length, L 
(mm)

Mean 
radius, r o 

(μm)

Minimum / 
maximum 

radius (μm)

Fractional 
radius 

variation, r v

Reference

Tyranno® ZMI (Si-C-O) 500 5.5 2.78 / 7.22 0.40 Morimoto3

Tyranno® SA (SiC) 300 4.7 2.7 / 7.05 0.46 Youngblood et al. 4

NicalonTM (Si-C-O) - 8.0 4 / 11 0.44 Zhu et al. 5

Hi-NicalonTM (Si-C-O) 250 6.9 3.9 / 10.1 0.45 Youngblood et al. 4

Hi-NicalonTM S (SiC) 300 6.15 4.3 / 7.3 0.24 Youngblood et al. 4

SylramicTM (SiC) 300 4.6 3.1 / 7.45 0.47 Youngblood et al. 4

Tyranno® LoxM (Si-C-O) - 4.03 2.13 / 5.72 0.45 Davies et al. 6
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MPa·m1/2 to 5.8 MPa·m1/2 [1]. Although a significant 
increase, fracture toughness values approaching 
those of metal alloys can only be approached 
through the use of relatively complicated and 
expensive CMCs based on multi-directional braided, 
woven, or knitted continuous fibres (e.g., 40 
MPa·m1/2 for a 3D woven composite [2]). 

One of the most important CMC systems has 
comprised of continuous SiC fibres within a SiC 
matrix produced from repeated polymer 
impregnation and pyrolysis (PIP) or chemical 
vapour infiltration (CVI). The SiC-based fibres for 
these composites have typically been 10 μm in 
diameter and either amorphous,  nanocrystalline, or 
crystalline in structure. 

Several researchers [3-6] have noted that 
modern SiC fibres, instead of having a constant 
radius along the fibre length, instead possess a 
“waviness” which can be approximated by a 
sinusoidal radius variation superimposed upon the 
mean radius value, r . Table 1 illustrates radius 
variation data for several SiC fibres [3-6] and it is 
clear that the fractional radius variation, rv, is 
significant and typically in the range of 0.25∼0.50.  

It would be expected that such a dramatic 
variation in fibre radius along the length may have 
significant consequences for the properties of the 
individual fibres, fibre bundles, and resulting 
composites. Several researchers have investigated 
this phenomenon (e.g., [7]) whilst the present author 
has previously determined the mean strength, *

Sσ , of 
a population of fibres with varying radii and whose 
strength is controlled by a population of surface 
flaws, to be of the form [8]: 
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where Δr is the Gaussian width of the radii 
distribution, m is the Weibull modulus, Γ is the 
gamma function, and ( )o rσ  is the characteristic 
scale strength at r .   

The present author has also investigated the 
initial creep rate [9, 10] and creep rupture time [10] 
of individual ceramic fibres with a varying radius 
along their length. For example, a ceramic fibre with 
a creep stress exponent of 3, which is typically the 
upper limit for current ceramic fibres based on the 
silicon carbide system [11], was found to have a 
normalised initial creep rate, *ε , i.e., when 

compared to a fibre with a constant radius, r , of 
[9]:  
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for a fibre with a radius that varied linearly in the 
range vr r±  along the fibre length and [9]:  
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for a fibre with a sinusoidal variation in radius 
within the range vr r±  along the fibre length. 

In the present work the author has utilized a 
Monte Carlo simulation method to extended the 
work of previous authors [12-16] in order to 
investigate the fracture behaviour of dry fibre 
bundles. The analysis assumed a population of fibres 
with a Gaussian distribution of fibre radii for 
neighbouring fibres but with each fibre having a 
constant fibre radius along its entire length. The 
presence of fibre radius distributions between 
neighbouring fibres in a single plane (perpendicular 
to the main axis of the fibre bundle) has been 
confirmed for Tyranno® LoxM Si-Ti-C-O fibres [17] 
and would closely approximate the situation in a 
CMC where a macroscopic crack has bridged a fibre 
bundle, i.e., constant radius within each fibre but 
different radii between neighbouring fibres. 

An important extension when compared to the 
analysis of previous researchers is that the strength 
of each fibre was calculated after taking into account 
the flaw population present within the fibre, rather 
than by directly assuming a distribution of 
macroscopic strength (normally taken to be a 
Weibull distribution [18]). The correlation between 
microscopic flaw population and macroscopic 
mechanical behaviour for a collection of brittle 
fibres was achieved using the analysis of Jayatilaka 
and Trustrum [19].  

 
 

2 Experimental Procedure 

 In this work a Monte Carlo simulation was 
employed in order to investigate the influence of 
radius variation on the dry bundle strength of brittle 
fibres. All the simulations were carried out, unless 
otherwise stated, on a collection of 104 fibres for 
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each bundle. Following the procedure of Jayatilaka 
and Trustrum [19], the fibres were considered to 
contain a population of flaws with a probability 
density, f(a), given by [20]: 
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where a is half the flaw length, c is a scaling 
parameter (of similar scale to the mean flaw size), 
and n is the rate at which f(a) tends to zero for large 
a. The distribution of f(a) for the case of c = 10-6 m 
and n = 3 utilised in the present work has been 
shown in Fig. 1. Assuming the flaws to be inclined 
with a random angle, β, the strength for any given 
flaw can be determined using the following 
relationship [19]: 
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where KIC is the fracture toughness. A value of 1 
MPa·m1/2 was chosen as a typical value for ceramic 
fibres [21]. However, it should be noted that the 
particular values of KIC, c, and n chosen would have 
no influence on the general trends noted in this 
investigation. 
 Jayatilaka and Trustrum [19] showed that, 
when taking into account the limits of integration, 
the probability of failure at any given stress, F(σ), 
can be given by: 
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which was found to be approximated by: 
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where: 
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From comparison with the simplified Weibull 

equation [18]: 
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it was deduced that the value of n in f(a) could be 
related to the Weibull modulus, m, through [19]: 
 

 m = 2n – 2                          (10) 
 

Thus, the value of n = 3 chosen in this work 
was thus equivalent to a Weibull modulus of 4, 
which is typical for ceramic fibres based on the 
silicon carbide system [22]. 

In the present work it was decided to make the 
number of flaws proportional to the surface area for 
the brittle fibres under investigation; this being a 
reasonable assumption for most brittle materials. 
The number of flaws within a fibre with a radius 
equal to the mean value, r , was taken to be 104 in 
order to ensure a reasonable statistical representation 
of the flaw population for any given fibre. As 
mentioned previously, the variation in radii between 
neighbouring fibres was assumed to follow a 
Gaussian distribution, G(r), as follows: 
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For each of the 104 fibres within the dry 

bundle, a random fibre radius was chosen according 
to G(r) and the number of flaws calculated 
according to: 
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Fig. 1. Schematic illustration of the Poloniecki and 
Wilshaw [20] flaw size distribution for the case of 

c = 10-6 m and n = 3. 
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For each of the flaws within the fibre surface, a 

random half flaw size was chosen according to f(a) 
and a random value of β chosen in the range (due to 
symmetry) of 0 2β π≤ ≤  with the associated flaw 
strength being calculated according to Eq. 5. The 
strength of each fibre was thus taken to be that of the 
weakest flaw present within each of the fibres. In 
order to achieve a statistically representative result, 
great care was taken in generating the (pseudo) 
random numbers utilised in this work with a linear 
congruent method being chosen for this procedure. 

In order to examine the effectiveness of the 
current Monte Carlo simulation, a Weibull curve 
generated by the current simulation for individual 
fibres with no radius variation (in order to exclude 
any effect due to this parameter) has been presented 
in Fig. 2 together with a curve generated using the 
theory of Jayatilaka and Trustrum [19]. A 
comparison of the Weibull parameters for these 
curves has been shown in Table 2. It can be seen 
from Fig. 2 and Table 2 that the Monte Carlo 
simulation was able to effectively describe the 
statistical mechanical behaviour of a population of 
brittle fibres using the Jayatilaka and Trustrum 
model [19] as the theoretical framework. 

Following confirmation of the efficacy of the 
current analysis, the next step was to investigate the 
load-displacement behaviour of the dry fibre bundles 
as a function of Gaussian radius width; both the 
maximum load and displacement at maximum load 
were normalised with respect to the case of a fibre 
bundle containing constant radius fibres. In the 
present work a global load sharing rule was applied 
to the distribution of load with the fibre bundle 
following fracture of any fibre.    

If we consider the respective surface area, 
SA(r), and area, A(r), of two example fibres with 
radii r rδ−  and r rδ+  then: 
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which means that, for a dry bundle containing 

a constant number of fibres, Nf, with a distribution of 
radii, the surface area of the fibre bundle will remain 
constant whilst the area (i.e., volume fraction, Vf) 
will increase. Therefore, properties obtained from 
the load-displacement curves, such as maximum 
load, were determined in terms of both constant Nf 
and constant Vf.  

 
 
3 Results and Discussion 

3.1 Load-Displacement Curves 

The influence of Gaussian radius width on 
typical load-displacement curves for dry bundles 
containing 104 brittle fibres has been presented in 
Fig. 3. Whereas there was no apparent influence of 
radius variation on the shape of the load-
displacement curve prior to the point of maximum 
load, a small but measurable effect was noticed in 
the “tail” of the load-displacement curves as the 
normalised load started to decrease. For this 
situation, the presence of a radius variation produced 
a relatively higher sustained load. Whilst this effect 
was judged to be significant and able to double the 
relative normalised load for the case of a fibre 
bundle with Δr = 0.3 when compared to a constant 
radius fibre bundle, however, when compared to the 
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Fig. 2. Comparison between simulated data and 
theoretical expression derived by Jayatilaka and 

Trustrum [19] for the following conditions: 
Number of fibres = 103, Flaws per fibre = 104,  

KIC = 106 MPa·m1/2, n = 3, and c = 10-6 m. 

Table 2. Comparison of parameters obtained from 
the simulated and theoretical Weibull curves. 

 
Parameter Simulation Theory 

m 4.074 4.000 
σo 88.15 88.30 

Spearman correlation 
coefficient >0.99997 
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maximum load achieved, the magnitude of the load 
increase in the tail region due to radius variation was 
still relatively minor and on the order of 3~4% of the 
maximum load.  
 
3.2 Fibre Radius Distributions 

In order to investigate the influence of radius 
variation on the dry bundle behaviour of brittle 
fibres, distributions of fibre radii normalised to r  
have been presented in Fig. 4. As expected, the 
initial distribution of radii data (prior to the 
simulated loading) was essentially Gaussian in 
nature with a small amount of superimposed noise 
consistent with the number of fibre radii sampled, 
i.e., 106. In contrast to this, the radius distribution for 
fibres at the point of maximum load was no longer 
symmetrical about the normalization point, i.e., r = 
r , but instead exhibited a slightly higher drop for 
higher radius values ( r rδ+ ) when compared to 
lower radii fibres ( r rδ− ). Also shown in Fig. 4 is 
the ratio of these two distributions as a function of r 
with the ratio being seen to follow an essentially 
linear decreasing relationship as r increased. The 
data presented suggested that fibres with larger radii 
preferentially failed during loading of the fibre 
bundle.  

At first consideration it may appear that the 
higher numbers of flaws per unit cross-sectional area 
for fibres with smaller radii (due to the larger ratio 
of surface area to fibre volume as r decreases) 
should lead to fibres with smaller radii being 
weaker. However, for global load sharing the load 
would be shared between each fibre in proportion to 
the fibre cross-sectional area, i.e., constant stress. 

Therefore,  fibres with larger radii will have larger 
surface areas and therefore a larger number of flaws, 
making them more likely to have a larger maximum 
flaw size (strictly speaking, “effective” flaw size 
when also taking into account the angle, β) and thus 
have a lower strength, when compared to a fibre 
with a smaller radius.  

This result may have some implications for 
composite researchers as, for a constant fibre/matrix 
interface shear strength, τ, the load sustained by the 
fibre bundle within the composite will be essentially 
proportional to the total fibre surface area. Thus, the 
increased probability of failure for fibres with larger 
radii will leave a remaining population with a 
smaller mean fibre radius; which equates to an 
increasing surface area per fibre and thus potentially 
a higher load per unit area (i.e., volume fraction) of 
fibre. In a similar line of thought, the smaller 
number of flaws present along the length of a fibre 
with a reduced fibre radius may have a positive 
influence on the fibre pullout length which, all other 
things being kept constant, will tend to increase the 
fracture toughness of the composite. 

 
3.3 Fraction of Failed Fibres 

The influence of radius variation on the 
fraction of failed fibres, α, at the maximum load has 
been presented in Fig. 5 with a clearly defined, but 
small, trend being noted, i.e., the fraction of fibres 
that failed up to the point of maximum load 
decreased, albeit slightly, with increasing radius 
variation. The range of values for the fraction of 
failed fibres noted in this work (0.201~0.204) was 
approximately 10% below the value (0.221) 
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Fig. 3. Influence of fibre radius Gaussian width, 
Δr, on normalised load-displacement curves for 
simulations conducted utilising 104 fibres, each 

containing 104 randomly oriented flaws. 
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Fig. 4. Comparison between: (i) initial distribution 
of radii data for 106 fibres picked during simulation 
and (ii) radius distribution at the point of maximum 

load, with Δr = 0.3 for both cases. Also shown is 
the ratio between maximum load distribution and 

initial distribution.  



IAN J. DAVIES 

calculated using the following expression [13]: 
 

( )1
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−
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The reason behind this unexpectedly low value 

of α will be investigated in later work. However, 
whilst a definite trend in α was noted with a change 
in radius variation, this change was only up to a 
maximum of approximately 1.5% for the largest 
radius variation investigated. 

 
3.4 Total Area, Flaws, and Maximum Load 

The influence of radius variation on total cross-
sectional area, total flaw numbers, and maximum 
load normalised to either a constant fibre number or 
constant cross-sectional area (i.e., volume fraction) 
has been presented in Fig. 6. As expected from Eq. 
14, for a constant fibre number, the normalised total 
cross-sectional area, AT, increased with increasing 
radius variation with the expected relationship 
between AT and Δr being of the form: 
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The normalised total flaw number, FN, within 

the fibre bundle was found to remain unchanged 
with respect to radius variation for the case of 
constant fibre numbers. This was explained through 
the relationship between radius and flaw number 
being linear for individual fibres as inferred by Eq. 
13 and: 
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With regards to the trend in FN with radius 

variation for constant volume fraction, in this case 
the value of FN in Eq. 17 would be divided by AT in 
Eq. 16 (to take into account the increasing AT with 
increasing radius variation), resulting in the decrease 
of FN with radius variation for constant volume 
fraction. 

 Analysing the trend in maximum load for 
constant fibre number (Fig. 6(b)) showed an increase 
of approximately 5% as the radius variation 
increased. Most of the increase in maximum load 
was attributed to the increasing total cross-sectional 
area, i.e., volume fraction, as the radius variation 
increased. Likewise, the decrease of approximately 
4% in maximum load with increasing radius 
variation for a constant volume fraction was 
attributed to the maximum load being divided by AT 
in Eq. 16 due to the need to take into account the 
constant volume fraction. 
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Fig. 5. Influence of normalised fibre radius 
Gaussian width, Δr, on the fraction of failed fibres 
at the maximum load. Data was averaged from 500 

simulations for each Δr. 
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Fig. 6. Influence of normalised fibre radius 
Gaussian width, Δr, on simulation results for 

constant fibre number, Nf, and constant volume 
fraction, Vf, situations: (a) surface area and number 

of flaws, and (b) maximum load. Data was 
averaged from 500 simulations for each Δr. 
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4 Conclusions 

The mechanical behavior of dry fibre bundles 
were analysed using a Monte Carlo technique in 
order to investigate any possible influence of radius 
variation. Unlike most previous researchers, the 
present work obtained the strength of the individual 
fibres as a direct consequence of the flaw population 
assumed to be present on the fibre surface. The flaw 
number was normalised to a value of 104 for the case 
of a constant radius fibre, with each fibre bundle 
being considered to contain 104 fibres. The 
following conclusions were made: 

 (i) the “tails” of the normalised load-
displacement curves were noted to increase in 
magnitude as the radius variation increased; 
however, when compared to the maximum load 
achieved this effect was relatively small (3~4%). 

 (ii) fibre radius distributions taken from the 
initial radius selection and then at the point of 
maximum load indicated the preferred failure of 
larger radius fibres; this effect was attributed to the 
increased number of flaws present on the surface of 
larger radius fibres. 

 (iii) the fraction of fibres (0.201~0.204) that 
failed at maximum load was approximately 10% 
lower than expected from standard theory and was 
noted to decrease slightly as the radius variation 
increased; this aspect will be the subject of 
additional research. 

 (iv) the normalised values of total cross-
sectional area, total flaw number, and maximum 
load, for the case of a constant fibre number or 
volume fraction, were found to change as expected 
as the radius variation increased.  
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