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Abstract 

Weibull weakest link model has been widely 
applied for the fracture probability scaling of brittle 
materials.  However, a discrepancy has been 
reported on some brittle monofilaments between the 
estimated fracture probability and the derived data 
in the way as if the Weibull parameters were 
dependent on the gauge length. 

This paper discusses an interpretation of flaw 
size distribution for Weibull parameters on the 
strength size-effect of brittle monofilaments.  A 
model on monofilament strength size-effect was 
firstly presented through coupling a Griffiths 
fracture mechanics and a distribution of crack 
initiating flaw size.  The model parameters and 
Weibull parameters were secondly compared to 
provide a relationship between Weibull parameters 
and flaw size distribution.  The results have read to 
a mathematical model of Weibull parameter 
dependence on the monofilament gauge length. The 
standard deviation of the flaw size distribution was 
found in the model an important factor of the gauge 
length dependence.   Then thirdly the mathematical 
model was applied on the Weibull parameters of 
Tyranno ZMI Si-Zr-C-O monofilament strength to 
assess if real monofilament reveals through the 
modeling the parameter dependence on the gauge 
length.  The result have indicated that the 
effectiveness of Weibull scaling might be questioned 
due to the variable Weibull parameters for the case 
to scale the fiber strength of ‘pull-out length’ level 
gauge using the data of rather long samples for 
monofilament tensile test. 
 

 
 
 
1  Introduction  

Fiber reinforced composites have been expanding 
the applications for aerospace lightweight structures 
due to the excellence in the specific strength.  
Although the distribution in the strength has 
challenged the material reliability, steady efforts for 
the database and the design expertise have enabled 
composite main structures such as carbon fiber 
reinforced plastic (CFRP) fuselages and wings for 
civil aircrafts.  On civil aero engines, however, 
metallic materials have been still used for the main 
components such as rotor disks and torque shafts.  
The failure of aero engine main components may 
lead to a tragic loss of life and the investment for a 
new engine.  Hence, the reliability of well-matured 
metallic materials still has both safety and economic 
benefits, even though composites may lead to a 
drastic weight reduction and automotive composite 
drive shaft and brake disk are already on the 
commercial market.  Thereby the further 
improvement on the strength reliability is one of the 
key factors of composites for the lightweight aero 
engine component applications. 
  Based on the Weibull weakest-link model, 
theoretical efforts have been made for describing the 
strength and the reliability of composites[1].  
However, some of the composite reinforcement 
fibers have been reported the discrepancies between 
the estimated fracture probabilities by the Weibull 
model and the derived experimental data.  Hitchon 
and Phillips measured the carbon fiber strength of 
different gauge lengths to have shown that Weibull 
scaling did not accurately reproduce the strength 
distribution at a gauge length with the parameters of 
another gauge length[2].  Knoff showed in 
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developing a modified weakest link model that 
classical weakest link model provided strength of 
fiber continue to increase at smaller test length even 
though real fibers frequently did not show the 
tendency[3].    Lavaste, Besson, and Bunsell also 
reported that classical Weibull distribution function 
could not account for the observed dispersions of 
different gauge lengths on alumina and alumina-
zirconia single fiber strength[4].  Gurvich, 
Dibenedetto, and Pegoretti showed that Weibull 
parameters vary with the fiber length by analyzing 
the data obtained separately for populations of E-
glass and carbon fibers[5].  Pickering and Murray 
reported on carbon fibers the inadequacies of 
classical Weibull model to extrapolate the strength at 
long gauge length down to short length[6]. 

  The factors of discrepancies between the 
Weibull scaling and experimental data have been 
discussed such as 1) experimental factors: 1-a)the 
strain rate may be a factor of the experimental error 
to influence the gauge length effects[7], 1-b)fibers 
generally have to be extracted from a bundle to 
cause longer samples break prior to testing at higher 
probability than shorter samples thus the 
‘preselection’ can cause the error[4], 1-c)the 
probabilistic effects of the clamp on fiber tensile 
testing at various gauge length, or ‘clamp effects,’ 
should be included in Weibull scaling[8], 2)fiber 
geometrical factors: geometrical irregularities along 
gauge length and between fibers at a bundle lead to 
the experimental error to hide the accuracy of 
Weibull scaling[9], and 3)modal factors: bimodal or 
multimodal distributions of flaw sizes may negate 
the accuracy of extrapolating the strength 
distribution data obtained at longer lengths down to 
fiber-matrix transfer lengths[10].  The authors have 
resolved the experimental factors 1) as 1-a)quasi-
static tensile condition has been attained with a slow 
cross head speed capacity of Instron 5540 tensile test 
system, 1-b)fibers of a length have been preselected 
from a bundle to be sampled as tensile test specimen, 
and 1-c)a datum of sample, which fractured within 
5mm from sample end, was not used for the further 
statistical analyses[11,12].  In addition, the authors 
have used elastic glue to minimize the stress 
concentration due to clamp or glue between sample 
fibers and the tabs.  On the fiber geometrical factors 
2), the authors have applied a laser scan micrometer 
(LSM, Mitutoyo Co. Ltd.), which is for fine wire 
assessment such as semiconductor bonding wire 
quality control, to measure sample fiber geometry in 
advance of the tensile test[11,12].  A ‘representative 
diameter,’ which is an imaginary uniform diameter, 

has been analytically derived for the strength 
calculations of variable diameter fibers[13].  The 
authors then coupled fiber tensile load and measured 
diameters to modify Weibull scaling for the material 
strength evaluation of variable diameter fibers.  The 
results have revealed that Nicalon, Hi Nicalon, and 
Hi Nicalon Type S SiC fibers (Nihon Carbon Co. 
Ltd.) possess drastically higher potential strength, 
which is of imaginary uniform diameter fibers, than 
the known data[14].  The modal factors 3) have been 
assessed through intensive scanning electron 
microscope (SEM) analyses on tensile tested fiber 
fracture surfaces of several gauge length 
samples[11].  The results on Tyranno ZMI Si-Zr-C-
O fibers (UBE Industry Ltd.) have shown that there 
were several kinds of crack-initiating flaws and the 
densities vary as the parameters of gauge length. 
Thus, single-modal Weibull model expected to 
provide a set of variable parameters by the sample 
gauge length.   

In this paper, the authors further study the effect 
of flaw distribution on the parameters of single-
modal Weibull model.  A statistical interpretation is 
presented for the parameters on the strength size-
effect of brittle monofilaments. 

 
 

2 A Model of Critical Flaw Size on Variable 
Gauge Length Fiber 

An imaginary uniform diameter brittle fiber is 
considered as schematically depicted in Fig.1:  the 
fiber of gauge length ‘L0’ contains flaws of 
distributed size ‘φ.’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 An imaginary model fiber 
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The probability density is assumed to be of the 
Gaussian distribution as follows on containing a 
flaw of the maximum size ‘φ0’. 
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Where, ‘Σ0’ denotes the standard deviation and ‘φμ’ 
the mean of flaw size.  Another imaginary fiber is 
considered for the gauge length ‘L1,’ where ‘L1 > 
L0.’  At an expectation the flaw size ‘φ0’ can shift to 
larger value by increasing the gauge length as 1)the 
gauge length is equivalent to the sample space of 
Gaussian distribution, 2)larger sample space 
provides higher expectation of the samples, and 3) a 
flaw of a size, which is larger than ‘φ0’ and smaller 
in the expectation at the gauge length ‘L0,’ can 
recover the expectation to the level of ‘φ0’ flaw if 
larger gauge length is assumed.  Thus, the maximum 
flaw size ‘φ1’ may be approximated as follows 
between fibers of the length ‘L0’ and longer gauge 
length ‘L1’. 
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Figure 2 schematically depicts the relationship 
in Eq. (2). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 A schematics of flaw size - gauge length 
relationship 

The Eq. (2) leads to a relationship as follows. 
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Figure 3 depicts the relationship (3) for the case 

C.V. 1.00 =Σ
μφ

 and the maximum flaw size 

‘φ0’ at ‘L0:’ 00 Σ+= μφφ .  The relationship (3) 
implies that larger flaws can exist in longer fibers, 
and the flaw size standard deviation ‘Σ0,’ in addition 
to the mean size ‘φμ,’ is one of the key parameters of 
the flaw size variability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Maximum flaw size – fiber gauge length 
curve for the case flaw size C.V. is 0.1 and the 

maximum flaw size is one sigma from the mean 
size 

 
 
 
2.2. A Fracture Strength Size-Effect Model  

Griffiths studied straight crack propagation in a 
flat homogeneous isotropic plate of uniform 
thickness being subjected to stresses[15].  The 
energy balance model  has revealed a crack 
propagating stress in the form inversely proportional 
to the square root of the crack length.  Many of the 
extensions such for ‘penny-shape crack’ have been 
also leaded to the form inversely proportional to the 
square root of flaw size on crack propagating 
stresses.  Following approximation may thus provide 
a relationship of acceptable error level between the 
fiber fracture stress, ‘σf,’ and the size of critical 
crack nucleating flaw, ‘φ.’ 
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φ
σ Const

f =                                (4) 

 
The flaw size ‘φ’ must be the largest in the fiber, as 
the smaller flaws require higher stresses than ‘σf’ to 
nucleate critical cracks. 

A relationship may be thus given between a fiber 
gauge length ‘L’ and the fracture stress ‘σf’ through 
the combination of (3) and (4). 
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This relationship (5) assumes that ‘φ0’ is the largest 
flaw size in the fiber of the gauge length‘L0’ and (3) 
estimates the largest flaw size for the fiber of the 
gauge length ‘L.’ 
 
 
 
2.3. An Interpretation of Weibull Parameters 
through the Flaw Statistics 

Single-modal Weibull weakest-link model 
appears as follows for the estimation of intrinsic 
mean strength through an extrapolation from a gauge 
length ‘L0’ data to the ‘L.’ 
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Where, ‘Γ’ is gamma function, ‘ σ ’is a mean 
strength, and ‘m and σ0’ are the Weibull shape and 
scale parameters at gauge length ‘L0,’ respectively.  
The relationships (5) and (6) must remain within 
acceptable error level on the size-effect variable 
‘L/L0.’ Thus, first and second terms may be 
approximated equal between the Taylor series of 
Eq.(5) and Eq.(6) around ‘1’on ‘L/L0’.  Thereby a 
relationship may be approximated as follows. 
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The relationships in (9) have re-defined the Weibull 
parameters with the Gaussian distribution 
parameters of critical flaw size. 

 
 

2.4.  A model of variable Weibull parameters 
The derived relationships in (9) have linked the 

parameters of Weibull distribution and Gaussian 
distribution.  Thus, the expertise on Gaussian 
distribution can add Weibull parameters the aspects 
as the functions of gauge length.  Fiber gauge length 
‘L0’ is equivalent to the sample size of Gaussian 
distribution on the flaw size statistics (1).  Thus, the 
mean ‘φμ1’and the standard deviation ‘Σ1’ at a gauge 
length ‘L1’ are given with the Gaussian distribution 
parameters at ‘L0’ as follows. 
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The relationships (10) may provide a set of 
Weibull parameters for the case ‘L0’ is unknown 
thus one takes a gauge length ‘L1’ as ‘L0,’ by 
substituting the ‘φ1’ and ‘Σ1’ for the ‘φ0’ and ‘Σ0’ of 
Eq.(9).  Figure 4 depicts the case of C.V. 

1.00 =Σ
μφ

 and the maximum flaw size ‘φ0’ at 

‘L0:’ 00 Σ+= μφφ . A set of the parameters 
insensitive to ‘L1/L0’ is desirable for the Weibull 
scaling users to expect that Weibull parameters are 
independent of the fiber gauge length thus the data 
of various gauge length samples are equally used in 
the strength scaling.  As depicted in Fig.4, however, 
the results showed a clear dependence of Weibull 
parameters on the fiber gauge length in the way the 
shape parameter ‘m1’ increases and decreases while 
the scale parameter ‘σ1’ decreases by assuming 

longer gauge length ‘L1’ around the unit of gauge 
length‘L0.’   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  A schematics of Weibull parameter 
dependence on sample gauge length 

 
 
This result may be important for the strength 

modeling of composites as many models assume 
gauge length insensitive Weibull parameters on the 
reinforcement fibers.  What is more, it is noted that 
the case of small standard deviation ‘Σ0’ leads to the 
‘gauge length insensitive’ Weibull parameters as the 
small ‘Σ0’ negates the factors of gauge length in Eq. 
(10). 
 
 

3 Experiments 

The mathematical model (9) and (10) were 
applied on the Weibull parameters of Tyranno ZMI 
Si-Zr-C-O monofilament strength to assess if real 
monofilament reveals through the modeling the 
parameter dependence on the gauge length. 

Tyranno ZMI monofilaments of 20mm, 50mm, 
100mm, 200mm gauges have been tensile tested 
with Instron 5542 tensile testing machine utilizing a 
10N load cell, at the cross head speed of 0.1mm/min. 
Prior to the tensile tests, the diameters of randomly 
selected 30 samples of each gauge length were 
measured in 1 mm step along the gauge length using 
a laser scan micrometer LSM-500 with an accuracy 
of ±0.1 μm (Mitutoyo Corp., Kanagawa, Japan).  
Each sample was immersed in glycerin during the 
tensile test to recover the fragments.  The fracture 
surfaces were then analyzed with scanning electron 
microscope (SEM, Hitachi Co. S-4700, Hitachi 
Japan). 
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4  Experimental Results and Discussion 

Figure 5 is a typical SEM image of a fracture 
surface used in the measurement of crack nucleation 
source size and table I shows the derived parameters 
of fiber strength for the four different gauge lengths 
of 20mm, 50mm, 100mm, and 200mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 An Example of Tyranno ZMI Fracture 

surface 
 
 

Table I  Tensile Test Results on Tyranno ZMI 
Gauge Length 

(mm) 
Mean strength 
σm [GPa] 

Standard 
deviation 
[×0.1GPa] 

200 2.7 7.6 
100 2.8 8.6 
50 2.8 6.6 
20 2.9 6.6 

 
 
The SEM fractography had revealed that the crack 

nucleation points located mainly close to the fracture 
surface circumference, or fiber surface.  The 
observed fracture surfaces had shown at the 
nucleation points particles or surface pre-cracks, 
which were surrounded by mirror area.  The 
particles or pre-cracks were approximated to be 
elliptic in the size measurements and the equivalent 
size of defect, ‘D,’ was defined as ‘D=(φl·φs)1/2’, 
where ‘φl’ and ‘φs’ were longer and shorter axis, 
respectively.  Figure 6 shows the derived 
relationship between the fracture stress ‘σf,’ which 
was calculated with the fracture portion diameter, 
and the equivalent size of defect ’D,’ with the error 
level of ±0.25μm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Fracture Stress against Size of Defect 
 
 
 
Figure 7 is a modification of the Fig.6 from ‘D’ to 

‘D-1/2’  excluding the ‘D’ of smaller than the error 
level of 0.25μm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Fracture Stress against the Defect Size 
‘D’ in D-1/2 

 

 

  The least-square fit in Fig.7 indicates that the 
fiber fracture stress, ‘σf,’ is approximately 
proportional to the ‘1/D1/2’ with the proportionality 
constant  of 1.5 MPa·m1/2, or Df /5.1=σ  
(MPa), as is expected on the Griffiths fracture 
mechanics.   Thus, ‘Const’ in Eq. (5) may be 
assumed 1.5 and following relationship may provide 
an acceptable approximation of Eq.(5) to fit the 
mean strength in Table I. 
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Where, ‘L0’ is set 20mm.  On this approximation 
the mean of flaw size ‘φμ’ is 2.3×10-1μm, the 
standard deviation ‘Σ0’ is 4.8×10-2μm and the 
critical flaw size ‘φ0’ is 2.7×10-1μm.  Thereby Eq. 
(9) provides a set of Weibull parameters for 20mm 
gauge length case as follows. 
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These results read to a set of variable Weibull 
parameters as depicted in Fig.8, where ‘L0=20mm’ is 
unknown thus one takes a gauge length ‘L1’ as ‘L0,’ 
by substituting the ‘φ1’ and ‘Σ1’ for the ‘φ0’ and ‘Σ0’ 
of Eq.(9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8  A derived  Weibull parameter 
dependence on sample gauge length for Tyranno 

ZMI Si-Zr-C-O fiber 
 
 

The Weibull shape parameter was found variable 
more than 5% by 20% level of gauge length 
variation.  This result is important as Weibull scaling 
has been often applied on the ‘pull-out’ level length 
of fiber strength using monofilament tensile data: the 
variation in gauge length is far more than 20% level 
thus inadequate Weibull parameters might have been 
applied in composite strength modeling.  Figure 9 
shows the case of estimating weibull parameters 
with 20mm gauge tensile data down to 10mm gauge, 

using Eq.(9) and Eq.(10).  The Weibull shape 
parameter was found slightly increases and 
drastically decreases by applying shorter gauge 
length of tensile samples.  Thus, the authors deduce 
that it is not desirable for effective fiber strength 
scaling to apply a set of constant Weibull parameters 
of a gauge length to far different gauge length fibers. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9 An estimation of Weibull parameters 
down to short gauge length of Tyranno ZMI Si-Zr-

C-O fiber 
 

 

5  Concluding Remarks 

The authors have presented a model on 
monofilament strength size-effect through coupling 
a Griffiths fracture mechanics and a distribution of 
crack initiating flaw size.  The model parameters 
were then compared with Weibull parameters to 
provide a relationship between Weibull parameters 
and flaw size distribution.  Through the comparison 
a mathematical model was derived for the Weibull 
parameter dependence on the monofilament gauge 
length. The standard deviation of the flaw size 
distribution was found an important factor of the 
gauge length dependence of Weibull parameters.   
Thus, flaw size control for smaller standard 
deviation appeared to be a possible scheme of 
attaining a minimal size effect of ceramic fiber 
strength.  

The gauge length dependence of Weibull 
parameters was assessed on Tyranno ZMI Si-Zr-C-O 
monofilament strength to see if real monofilament 
shows the parameter variability.  The result have 
indicated that the effectiveness of Weibull scaling 
might be questioned for the case to scale the fiber 
strength of ‘pull-out length’ level gauge using the 
tensile test data of rather longer samples. 

7  



Tetsuya Morimoto, Y. Muta, K. Konaka and S. Ogihara  

References 

[1] Weibull W. “A statistical distribution function 
of wide applicability”. Journal of Applied 
Mechanics, Vol.18, No.3, pp 293-297, 1951 

[2] Hitchon J. W. and Phillips D.C. “The 
dependence of the strength of carbon fibres on 
length”. Fibre Science and Technology, Vol.12, 
pp217-233, 1979 

[3] Knoff W. F. “Combined weakest link and 
random defect model for describing strength 
variability in fibres”. Journal of Materials 
Science, Vol.28, pp931-941, 1993 

[4] Lavaste V., Besson J. and Bunsell A. R. 
“Statistical analysis of strength distribution of 
alumina based single fibres accounting for fibre 
diameter variations”. Journal of Materials 
Science, Vol.30, pp2042-2048, 1995 

[5] Gurvich M. R., Dibenedetto A. T. and Pegoretti 
A. “Evaluation of the statistical parameters of a 
Weibull distribution”. Journal of Materials 
Science, Vol.32, pp3711-3716, 1997 

[6] Pickering K. L. and Murray T. L. “Weak link 
scaling analysis of high-strength carbon fibre”. 
Compoisites Part A, Vol.30, pp1017-1021, 1999 

[7] Pan N., Chen H. C. Thompson J., Inglesby M. 
K., Khatua S., Zhang X. S. and Zeronian S. H. 
“The size effects on the mechanical behaviour of 
fibres”. Journal of Materials Science, Vol.32, 
pp2677-2685, 1997 

[8] Phoenix S. L. “Clamp effects in fiber testing”. 
Journal of Composite Materials, Vol.6, pp322-
337, 1972 

[9] Zhang Y., Wang X., Pan N. and Postle R. 
“Weibull analysis of the tensile behavior of 
fibers with geometrical irregularities”. Journal of 
Materials Science, Vol.37, pp1401-1406, 2002 

[10] Hitchon J. W. and Phillips D. C. “The 
dependence of the strength of carbon fibres on 
length”. Fibre Science and Technology, Vol. 12, 
pp217-219, 1979 

[11] Morimoto T., Nakagawa S., and Ogihara S. 
“Bias in the Weibull strength estimation of a SiC 
fiber for the small gauge length case”. JSME 
International Journal, Series A, Vol. 48, No.4, 
pp194-198, 2005 

[12] Morimoto T., Yamamoto K. and Ogihara S., 
“Strength improvement on an imaginary SiC 
fiber of ideal diameter and reduced internal 
defects estimated from the Weibull scaling of 
Tyranno ZMI fiber”. JSME International Journal, 
Series A, Vol. 49, No.1, pp15-19, 2006 

[13] Morimoto T. “A representative diameter for the 
Weibull scaling of variable diameter 
monofilament strength”. Composites Part A, 
Vol.34, pp.597-601, 2003 

[14] Morimoto T. and Ogasawara T. “Potential 
strength of NicalonTM, Hi NIcalonTM, and Hi 
Nicalon Type STM monofilaments of variable 
diameters”.  Composites Part A, Vol.37, pp 405-
412, 2006 

[15] Griffith A.A. “The Phenomena of Rupture and 
Flow in Solid”. Philosophical Transactions of 
Royal Society, 221A, pp163-198, 1921 


