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Abstract 

This paper critically reviews available models 

for the DCB specimen. One of the most popular 

models incorporates a two-parameter Pasternak 

spring foundation. This paper argues that the 

Pasternak foundation model is physically incorrect 

for modelling the DCB specimen as it accounts for 

the shear stiffness ahead of the crack tip twice and 

thereby provides an overly stiff model. Numerical 

examples are presented to support the arguments. 

The paper advocates use of Timoshenko beams on 

Winkler tensile spring foundations or use of energy 

approaches to incorporate the crack tip compliance. 

 

 

1 Introduction 

The Double Cantilever Beam (DCB) specimen 

is the most popular specimen for testing fracture 

toughness of adhesives and interlaminar toughness 

of composites. Numerous structural models have 

been published to facilitate DCB specimen design 

and data evaluation. A comparison of beam, plate 

and 3D solutions for the DCB specimen can be 

found in [1]. 

Complete 3D or 2D elasticity models are 

obviously the most accurate although such models 

are impractical for test evaluation. 3D models are the 

only models able to cope with free edge effects, but 

such effects are confined to a very small region close 

to the free edge and do not significantly affect the 

crack growth in the wide specimens commonly used 

for composites [2]. 2D elasticity solutions are 

limited by the assumption of either plane stress 

conditions (specimens of negligible width) or plane 

strain conditions (infinitely wide specimens) but 

cannot capture the anticlastic (saddle-shaped) 

deformation associated with plate bending. 

Thus, when a bending moment is applied to an 

unconstrained plate the coupling via Poisson’s ratio 

also causes a curvature perpendicular to the applied 

moment. This contributes to a width-wise variation 

of the strain energy release rate which is far greater 

than the variation associated with the transition from 

plane stress to plane strain as illustrated by the 

comparison of a DCB specimen with a middle 

cracked (MC) specimen of equal width [2]. 

Beam models are the most common and can 

easily be generalised to wide plates for specimens 

with a small crack length to width. Beam models 

include the Euler-Bernoulli beam, with infinite shear 

stiffness, and the Timoshenko beam, which also 

includes shear compliance. Improved beam models 

of the DCB specimen usually involve a beam on an 

elastic foundation, Fig. 1. The most commonly used 

foundation models are the Winkler foundation, 

which only includes an out-of-plane normal 

stiffness, kw, and the two-parameter Pasternak 

foundation, which also includes shear stiffness, ks. 

 

 
Fig. 1.  Elementary model of the DCB specimen. 

 

2 Overview of models for the DCB specimen 

3D solutions for the DCB specimen have only 

been obtained by use of FE models, e.g. [2]. A 2D 

plane strain elasticity solution for the stress intensity 

factor of an isotropic DCB specimen was derived by 

Chang et al [3] but explicit compliance expressions 

were not provided. 

The important effect of anticlastic curvature 

was studied by Davidson and Shapery [4], who used 

a Raleigh-Ritz plate model to study the transition 

from a uniaxial strain solution at relatively small 

crack length-to-width ratios to a uniaxial stress 
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solution at relatively large ratios. The former case is 

well described by cylindrical bending of a plate, 

while the latter case is described by a beam solution. 

The difference between these asymptotic cases is 

small for unidirectional laminates, moderate for 

isotropic specimens and large for ±45° laminates. 

 

 
 

Fig. 2.  Elementary model of the DCB specimen. 

 

An elementary model of the DCB specimen 

was suggested by Benbow & Roesler [5] who 

prevented rotation at the loaded end, effectively 

doubling the crack length and displacement of the 

modern DCB specimen. They modelled each 

member as a rigidly clamped Euler-Bernoulli beam, 

which has infinite shear stiffness (A55= ∞), Fig. 2. 

This model neglects shear deformations in the 

cracked part of the specimen and the compliance of 

the uncracked part. These effects are particularly 

important in fibre composites, which have low shear 

stiffness and tensile stiffness transverse to the fibres. 

 

 

 
The compliance of the uncracked part of the 

specimen is reflected in a non-zero slope at the crack 

tip, and has been demonstrated experimentally by 

use of optical methods [6] although the suggested 

structural model was questionable. A discussion on 

the experimental observations in [6] and their 

agreement with the suggested model as well as with 

various other DCB models was provided in [7]. 

Kanninen [8] originally modelled the specimen 

as an isotropic Euler-Bernoulli beam on a Winkler 

foundation, which models the uncracked part as a 

tensile spring foundation, Fig. 3a. An equivalent 

model for orthotropic specimens was provided in 

[9]. More accurate models have allowed for shear 

deformations by replacing the Euler-Bernoulli beam 

with a Timoshenko beam, which has finite shear 

stiffness (A55=KGxzh< ∞). Here K≈5/6 is the shear 

factor of the section. In a subsequent paper 

Kanninen [10] modelled the specimen as an 

isotropic Timoshenko beam on a Pasternak 

foundation, where the uncracked part is a combined 

tensile/shear spring foundation, Fig. 3b. This model 

was later extended to orthotropic specimens by 

Williams [11]. This model has been used extensively 

in standards development and recently by 

Szekrényes and Uj [12] to model mixed mode 

specimens. 
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Fig. 3.  Overview of improved DCB models 
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Whitney [13] used higher order plate theory to 

obtain a solution by an assumed normal stress 

distribution in the uncracked part of the specimen, 

Fig. 3c. The model assumed cylindrical bending 

(plane strain) but can easily be compared to beam 

solutions by setting νxy in the plate stiffness to zero. 

Similarly beam models can easily be applied to the 

case of cylindrical bending of a wide plate by 

replacing ExI by D11. 

Olsson [1] used a Timoshenko beam for the 

cracked part but modelled the uncracked part as an 

Euler-Bernoulli beam on a Winkler foundation 

(ks=0) and obtained the additional shear rotation by 

an energy approach combined with Saint Venant 

stress decay rates, Fig. 3d. Balendran [14] found the 

rotation at the crack tip by use of Reissner’s mixed 

variational approach, but did not allow for transverse 

normal stresses and the associated displacement, 

Fig. 3e. Kondo [15] used a more straight forward 

approach and modelled the entire specimen as a 

Timoshenko beam on a Winkler foundation, Fig. 3f. 

An identical model for isotropic specimens was 

recently presented by Shahani and Forqani [16] as a 

part of a more general dynamic solution. 

3 Theoretical discussion 

It is essential to realise that the beam-

foundation model is actually an abstraction, where 

the foundation (with out-of-plane normal stiffness kw 

and shear stiffness ks) and beam represent different 

aspects of the same piece of material, Fig.1. The 

beam represents the mid-plane of the upper 

specimen half, and the ability of this mid-plane to 

deform in shearing and bending. The foundation 

represents the material between this mid-plane and 

the specimen symmetry plane, and the resistance of 

the mid-plane to translate. 

An Euler-Bernoulli beam has infinite shear 

stiffness (Grz= ∞) and thus a Timoshenko beam is 

clearly necessary to incorporate through-thickness 

shear deformations in beam models. A Timoshenko 

beam has, however, infinite stiffness in through-

thickness tension/compression. The compliance due 

to out-of-plane tension/compression may be 

incorporated by a Winkler spring foundation. The 

use of a Pasternak foundation (ks>0) introduces an 

additional shear stiffness of the material ahead of the 

crack front. In general improved beam models result 

in the following type of expressions for the 

specimen compliance [1,5-12]: 
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The cubic term corresponds to the elementary 

DCB model with a rigidly clamped Euler-Bernoulli 

beam. The square term accounts for crack tip 

rotation and includes contributions from both normal 

and shear compliance ahead of the crack. 

Crack length corrections ∆ are frequently used 

in the elementary DCB model to approximately 

account for the increased compliance caused by 

shear deformation and crack tip rotation:  
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It is evident that the three constants a2, a1 and 

a0 in Eq. 1 cannot be correctly fitted by the single 

correction term ∆  in Eq. 2, although the 

approximation ∆ = a2/3 usually only results in 

negligible errors. A comparison of theoretical crack 

length correction terms for different models was 

provided in [17]. For evaluation of experiments it is 

more reliable to use the empirical crack length 

correction method suggested by Hashemi et al. [18]. 

4 Comparison of models 

Figure 4 gives a comparison of the compliance 

of a typical unidirectional carbon/epoxy specimen 

(cases 1-4 in Table 1) as obtained by a plane stress 

FE analysis in [11] and by the beam models of 

Williams [11], Olsson [1] and Kondo [15]. In this 

comparison Williams is represented by the 

theoretically derived compliance, rather than by the 

compliance obtained using the FE based empirical 

correction suggested in [11]. 
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Fig. 4.  Comparison between compliance for FE 

analysis and some improved beam models 
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It is noted that the Pasternak foundation model 

adopted by Kanninen/Williams/Szekrényes 

persistently underestimates the specimen 

compliance. Further studies are required to clarify if 

the small discrepancy between the FE analysis and 

the other models is due to insufficient mesh 

refinement or due to limitations of the beam models. 

Table 1 gives a comparison of the compliance 

of the different models for a number of test cases. 

This table includes the compliance of a plane stress 

FE analysis [11] normalised by the rigidly clamped 

Euler-Bernoulli beam model, and the deviation of 

each model with respect to the FE results. To allow a 

comparison with the beam models the Poisson’s 

ratio νxy was set to zero in the plate model by 

Whitney [13]. 

The models by Olsson [1], Whitney [13] and 

Kondo [15] are generally more compliant than the 

FE solution and provide small errors for most cases, 

although the model by Olsson [1] is less reliable for 

some extreme cases. The deviation from the exact 

solution is likely to be even smaller since discrete 

models like FEM tend to be stiffer than the actual 

continuous structure. The models by Ozdil & 

Carlsson [9], Kanninen [10]/Williams [11] and 

Balendran [14] are persistently stiffer than the FE 

solution, which in itself is slightly stiffer than the 

exact solution. 

The model by Ozdil & Carlsson [9], which is 

based on the Euler-Bernoulli beam severely 

underestimates the specimen compliance. This 

highlights the importance of including transverse 

shear deformation, particularly for short beams and 

materials with low shear modulus. 

The deviation of the solution by Balendran is 

explained by the neglect of the transverse 

compliance at the beam root. Not surprisingly the 

model by Balendran is relatively inaccurate when 

the transverse modulus is small (Case 11) but it is 

worth noting that it is extremely accurate when the 

modulus is large (Case 12). It is likely that an 

extension of the approach by Balendran to include 

transverse normal stresses and displacements in the 

uncracked specimen part would yield a highly 

accurate solution. 

The overestimated stiffness of the models 

based on a Pasternak foundation is explained by the 

fact that the shear stiffness of the material ahead of 

the crack tip is accounted for twice, i.e. both in the 

beam model and in the elastic foundation. Williams 

[11] overcome this deficiency by an empirical 

correction factor based on FE results, which 

effectively reduced the shear stiffness in the model. 

A similar overestimation of the stiffness was 

observed in [12] and in [19]. Improved agreement 

with experimental data when replacing the Pasternak 

 

 
Table 1.  Compliance of FE model compared with elementary DCB model and various improved models 
 

Case Ex Ez Gxz a/h FE
 

Ozdil & 
Carlsson 

Williams Balendran Olsson Whitney Kondo 

 [GPa] [GPa] [GPa]  CFE/ C0 
*
 [% deviation from FE results] 

1 147 7.81 2.76 40 1.197 -7.8 -2.3 -1.2 0.3 0.9 1.4 

2 147 7.81 2.76 30 1.268 -10.4 -3.2 -1.5 0.4 1.2 1.8 

3 147 7.81 2.76 20 1.418 -14.4 -3.9 -2.2 0.7 1.7 2.5 

4 147 7.81 2.76 10 1.914 -23.9 -4.4 -3.2 2.6 4.1 5.5 

5 73.5 7.81 2.76 20 1.295 -9.1 -3.0 -2.3 2.0 1.7 2.4 

6 294 7.81 2.76 20 1.603 -21.6 -4.9 -2.1 1.2 1.8 2.6 

7 147 7.81 0.69 20 1.860 -34.8 -6.1 -0.4 7.4 1.5 1.9 

8 147 7.81 1.38 20 1.590 -23.7 -5.0 -1.3 3.2 1.5 2.1 

9 147 7.81 5.25 20 1.309 -7.3 -3.1 -2.8 3.9 2.6 3.6 

10 147 7.81 10.50 20 1.241 -2.2 -2.9 -4.3 5.8 3.1 4.1 

11 147 0.78 2.76 20 1.499 -6.6 -4.6 -7.5 7.7 3.8 5.5 

12 147 1000 2.76 20 1.380 -23.1 -4.1  0.4 7.6 0.8 0.9 

13 147 147 56.5 40 1.049 0.0 -0.6 1.0 1.7 2.1 1.3 

14 147 147 56.5 20 1.100 -0.1 -1.1 -2.0 3.3 4.1 2.5 

15 147 147 56.5 10 1.208 -0.3 -2.0 -3.9 6.3 7.8 4.8 

*) C0=8(a/h)
3
/(Exb), Compliance of elementary DCB model with two rigidly clamped Euler-Bernoulli beams of width b 
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foundation by a Winkler foundation was noted 

already by Gehlen et al. [19]. They argued that the 

foundation shear stiffness should vanish as shear 

stresses vanish on the symmetry plane of the 

specimen. This argument is not entirely relevant as 

the foundation model assumes constant stress 

through the foundation thickness, which should 

equal the average stress over the foundation 

thickness (h/2). The average shear stress in the beam 

and foundation are equal and non-zero although the 

shear stress is zero on both lateral surfaces. 

The results in Table 1 clearly demonstrate the 

necessity to include the rotation and translation at 

the crack tip caused by shear deformations and 

through-thickness tension in the uncracked part of 

DCB specimens. This may be done by energy 

approaches or by combination of a Timoshenko 

beam with a Winkler foundation, which lacks shear 

stiffness. The additional shear stiffness of Pasternak 

foundations produces an overly stiff model by 

accounting for the shear stiffness twice. In most 

cases this only causes moderate errors, but the use of 

a Pasternak foundation is nevertheless physically 

incorrect. More appropriate models have been 

available for a long time but the choice of 

foundation model still appears to cause confusion in 

the composites community. 

The strain energy release rate G is obtained by 

differentiating the compliance with respect to the 

crack length. By considering Eq. 1 it is obvious that 

any deficiencies in the DCB model will have a 

smaller effect on the strain energy release rate than 

on the compliance than. It should, however, be noted 

that values of G based on simplified models will be 

unconservative, i.e. too low. 

It is evident that beam models are unable to 

capture phenomena such as finite width effects or 

crack front curvature, which require plate models or 

3D models. However, there is still scope for further 

work on incorporating phenomena such as z-pins, 

fibre bridging and material or geometrical 

nonlinearity. This work should be based on the most 

accurate models currently available. 

5 Conclusions 

It has been demonstrated that the use of a 

Pasternak foundation, which exhibits both tensile 

and shear stiffness, produces an overly stiff and 

physically incorrect model of the DCB specimen, as 

it accounts for the shear stiffness of the uncracked 

part twice. DCB models based on shear deformable 

beams on a Winkler tensile foundation all provide 

acceptable results and should be the basis for future 

model development. Interesting alternative 

approaches include an extension of Reissner’s mixed 

variational approach and the higher order plate 

theory accounting for through-thickness extension. 
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