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Abstract  

Recently, short fiber reinforced composites are 
widely utilized in many structural parts in automobile, 
infrastructure and electric equipment applications 
due to their high specific strength, high specific 
stiffness, long fatigue life and high impact resistance 
as well as cost effective capability of production. If 
these parts are exposed to low-velocity impact, 
significant damages may develop inside the 
composite parts. These damages may cause 
reduction of mechanical performances of composite 
parts. Therefore, predictive analytical or numerical 
tools are required to evaluate and analyze the 
integrity of composite parts with impact damages.  

In this study, a user-defined material subroutine 
incorporating damage mechanisms of short fiber 
reinforced composites was developed adopting and 
modifying various damage models. Then, the 
subroutine is implemented into ABAQUS to conduct 
analysis of short fiber reinforced composites parts. 
The results were compared with those without 
considering damage mechanism. 
 
 
1.  Introduction  

One of major issues in today’s automobile and 
electric home appliance industries is developing 
stronger and lighter products. In response to the 
demands, light weight and high specific strength 
fiber reinforced composites are being applied 
extensively. According to the types of fiber, fiber 
reinforced composites are divided into long fiber 
reinforced composites and short fiber reinforced 
composites. Compared to short fiber reinforced 
composites, long fiber reinforced composites have 
superior mechanical properties in the fiber direction 
and usually used for high performance products such 
as aerospace applications. However, their fabrication 

processes are complicated and require sophisticated 
facilities. Also, it is difficult to implement them to 
mass production processes. On the contrary, the 
short fiber reinforced composites is inferior to long 
fiber reinforced composites in mechanical 
performances, but they can be shaped into variety of 
forms and is easy to apply to resin injection 
procedures, thus it is easier to implement them to 
mass productions. For these reasons, it is reasonable 
to apply short fiber reinforced composites to some 
automobile parts and electric home appliance 
products, in which mass production is essential. For 
example, metal parts in the automobile such as 
intake manifolds, junction boxes, HVAC (Heating, 
Ventilating and Air Conditioning) cases, engine 
gaskets and various structural parts have been 
replaced with equivalent stiffness short fiber nylon 
composites for weight reduction. In mobile phones, 
emphasizing slimness, traditional magnesium cases 
are replaced with short fiber reinforced 
Polyphthalamide  resin for efficient mass production. 

As short fiber reinforced composite products 
are being developed actively throughout industries, 
it is necessary to understand the properties and 
behaviors of short fiber reinforced composites from 
the designer’s viewpoint. In addition, for the 
reliability of short fiber reinforced composite 
products, the integrity of the products under impact 
conditions must be considered. Unfortunately recent 
commercial packages do not provide accurate 
damage process of short fiber reinforced composites. 
Therefore, predictive analytical or numerical tools 
are required to evaluate and analyze the integrity of 
composite parts with impact damages.   

In order to understand the behaviors of short 
fiber reinforced composites under impact loading, 
understanding of micromechanics and fracture 
mechanics associated with of short fiber reinforced 
composites is needed. The short fiber reinforced 
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composites have the characteristic of heterogeneous 
materials in which short fibers are arranged 
disorderly in the random directions on homogeneous 
matrix. In addition, due to perturbed strain between 
the fiber and the matrix and interaction effect among 
fibers, the general elastoplastic theories of 
homogeneous materials can not be applied as they 
are. To overcome such difficulties, Ju and Chen [1-
3] averaged the whole of the components by 
applying the concept of mesoscopic representative 
volume element to short fiber reinforced composite 
composed of two phases, namely, matrix and 
inclusion. They proposed an effective constitutive 
equation that can homogenize the properties of 
heterogeneous materials. Based on the constitutive 
equation, Ju and Tseng [4] explained elastoplastic 
behavior through an effective yield criterion that 
adopted stress norm averaged as a whole at an 
arbitrary position inside short fiber reinforced 
composites. In addition, phenomena appearing in the 
damage mechanism of short fiber reinforced 
composites are divided largely into the interfacial 
debonding between the matrix and fibers, facture of 
fiber, and fracture of matrix. Particularly, because 
interfacial debonding among the components brings 
microcracks inside the composite, it is the most 
important factor to be considered in fracture 
mechanism. For a quantitative approach to the 
degree of interfacial debonding, Ju and Lee [9] 
predicted elastoplastic behavior in terms of 
interfacial complete debonding between the matrix 
and fibers using Weibull’s probability distribution 
function. Zhao and Weng [5, 6] and Ju and Lee [8] 
also used Weibull’s probability distribution function 
to predict elastoplastic behavior in terms of 
interfacial partial debonding between the matrix and 
fibers. 

Because the short fiber reinforced composite 
shows the behavior of a brittle material with a very 
short plastic zone, it is more efficient to approach 
the fracture mechanism after interfacial debonding 
between the matrix and fibers than to use an 
effective yield criterion and stress norm [10]. In 
fracture mechanics, behavior after plastic yielding  
can be expressed using the size of microcracks and 
the number of microcracks per unit volume. If stress 
on the material is higher than crack initiation stress, 
cracks are nucleated inside the material [12] and 
grow according to energy balance conditions [13] 
and the growth rate depends on the Rayleigh wave 
speed proposed by Freund [11]. 

In this study, in order to produce more accurate 
results of simulation reflecting behavioral characteristics 

related to the plasticity and fracture of short fiber 
reinforced composites, the effects of elastoplastic 
behavior and fracture process after interfacial 
debonding between the matrix and fibers are 
incorporated in the numerical model, and linked to 
commercial package, ABAQUS. 

 
 

2. Damage Mechanism of Short Fiber Reinforced 
Composites 

The short fiber reinforced composites are 
composed of matrix (Phase 0), perfectly bonded 
fibers (Phase 1), microcracks (Phase 3), and voids 
(Phase 4) (see Fig. 1 (a)). When short fiber 
reinforced composites are subject to remote tensile 
loading (see Fig. 1 (b)), some fibers may experience 
partial debonding between the matrix and fibers as 
deformations proceed. As a result, partially 
debonded fibers (Phase 2) appear newly in short 
fiber reinforced composite.  

 

 

oo εσ ,Phase 0

(a) Initial condition                    (b) Under loading   
Fig. 1. Schematic diagrams of short fiber reinforced 

composite 
 

In order to regard short fiber reinforced 
composite as an equivalent homogeneous continuum 
medium, effective Young’s modulus  and 
Poisson’s ratio 

eE
eν  can be derived by applying the 

concept of the representative volume element 
representing heterogeneous domains and ensemble 
averaging of the properties of all heterogeneous 
domains. Effective stiffness tensor is expressed as 
their function and it is expressed as  

( , )=ij e eC C E ν
 

(1)

The degree of moduli ( , *E *ν , ) degraded 
by crack nucleation and crack growth are derived 
through differential scheme estimate. 

*G

Phase 1Phase 3 Phase 2 

Phase 4
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(2)

where ω , N and c are crack density, number of 
microcracks per unit volume and mean crack radius, 
respectively. Degradation stiffness tensor is a 
function of degradation Young’s modulus  and 
Poisson’s ratio 

*E
*ν  derived from Eq. (2), and it is as  

* *( ,=ijC C E )ν
 

(3)

Damage mechanism of short fiber reinforced 
composites has 3-processes, interfacial debonding of 
fibers, the crack nucleation and crack growth.  

First, the evolutionary interfacial debonding 
between matrix and perfectly boned fibers occurs 
under increasing loading or deformations, and 
debonded fibers can be regarded as partially 
debonded fibers. Volume fraction 2φ  of the partially 
debonded fibers assume to be controlled by the 
hydrostatic stress 1( )mσ  of the fibers, and criterion 
for debonding fibers can be expressed using 
Weibull’s statistical function 1[( ) ]d mP σ [1] as 

1
2 1
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(4)

where,  and M are scale and shape parameter of 
Weibull’s statistical function, respectively, and 

0S
φ  is 

the initial volume fraction of fibers. 
Second, the criterion of microcrack nucleation 

can be expressed as an exponential relation using 
initial stress noσ  for the nucleation of micro cracks 
and it is give as  
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(5)

where  is the number of microcracks per unit 
volume and 

&N
1σ  is an experimentally determined 

parameter. It is assumed that the applied stress is 
defined as 11 22 33[( ) ( ) ( )] / 3= + +σ σ σ σ . For the 
backward Euler method, &N  can be written in an 
incremental form as 

1
1 1

1

( )exp +
+ +

⎡ −
= + ∆ ⋅ ⎢

⎣ ⎦
& n no

n n n oN N t N σ σ
σ

⎤
⎥

 
(6)

where 1+nN  is the number of microcracks per unit 
volume at time t = tn+1. If the volume fraction of 
partially debonded fibers reaches the maximum 
value and if current stress is satisfied with crack 
nucleation rate relationship of Eq. (5), crack 
nucleation increases in short fiber reinforced 
composites [4]. 

Lastly, the crack growth criterion of 
microcracks can be derived by considering energy 
balance around the microcracks and damage 
surfaces ( , , )F p q c . It can be expressed with pressure 
p, deviatoric stress q, and mean crack radius c  of 
microcracks.  

It is expressed in tension (p<0) as 

2 2
0

0

45 2( , , ) (2 )
4(5 )

⎡ ⎤= + − −⎢ ⎥− ⎣ ⎦
n KF p q c q p

c
ν
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(7)

and in compression (p>0) as 

2
0 02

45( , , )
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(8)

where K is defined by plane strain facture toughness 
and shear modulus [5].  0σ  is cohesive stress and  

fµ  is the coefficient of friction. If ( , , ) 0>F p q c , 
cracks will grow until the rate of crack growth, &c , 
satisfies the requirement ( , , ) 0≤F p q c . For the 
backward Euler method, &c  can be written in an 
incremental form as 

*

1 1 * ( )+ += + ∆n n n
Ec c t tanh dβ
ρ s

 
(9)

where 1+nc  is the mean radius of microcrack at time t 
= tn+1, β  is a scaling factor for crack speed and is 
assumed to be a constant. sd  is the measure of the 
distance the amount by which the state of the stress 
exceeds the damage surface.  

The basic assumption of the fracture mechanics 
based damage model is that the damaged state of a 
solid can be described by the number of microcracks 
per unit volume N  and the mean radius c of 
microcracks. Using Eqs. (1) - (9), the constitutive 
relation for short fiber reinforced composites with 
statistically uniformly distributed microcracks can 
be expressed as 

( , ) := C c Nσ ε  (10)

3  
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where σ  is the macroscopic stress, C  is the overall 
stiffness tensor, ε  is the macroscopic strain, and 
“ : ” denotes the tensor contraction. The rate form of 
Eq. (10) can be expressed as   

C C: :∂ ∂
= + +

∂ ∂
& & && N c C :

N c
σ ε ε ε

 
(11)

The numerical integration algorithm must be 
employed to integrate the rate equations in Eq. (11). 
Consequently, the overall macroscopic stress can be 
written as [14] 

1 1 1 1

1 1
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+ + + +

+ +

∂ ∂
= + ∆ + ∆ + ∆ ∆

∂ ∂
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(12)

where the subscript n denotes the nth integration 
time step. 
 
 
3.  Numerical Damage Model 

3.1 Damage Model for Short Fiber Reinforced 
Composites  

Because the short fiber reinforced composites 
show the behaviors of brittle materials, it is more 
efficient to approach the damage process after 
interfacial debonding between the matrix and fibers 
than to use an effective yield criterion and stress 
norm.  

In the present study, the fracture process of 
short fiber reinforced composites is composed of an 
algorithm that crack growth proceeds when the state 
of interfacial debonding of fibers is confirmed and 
the volume fraction of partially debonded fibers 2φ , 
which is increased by interfacial debonding, reaches 
the maximum level. Then, microcracks are nucleated. 
These assumptions are based on that the interfacial 
debonding between the matrix and the fibers tends to 
have partial debonding. It can transmit internal stress 
into the matrix through the bonded portion and, as a 
result, cracks do not grow until volume fraction 2φ  
in Phase 2 reaches the maximum level. In addition, 
the initial mean radius of microcracks 0c  and the 
number of initial microcracks per unit volume  to 
be considered in the damage process after interfacial 
debonding are considered as the size and number of 
microcracks occurring by the interfacial partial 
debonding between the matrix and fibers. The flow 
diagram of damage analysis procedure is shown in 
Fig. 2. 

0N

Interfacial debonding

(Micromechanics based model)

2 2 max=φ φ

Crack growth
(Fracture mechanics based model)

Crack nucleation
(Fracture mechanics based model)

Failure

yes 

no

 
Fig. 2.  Flow diagram for damage analysis procedure 

 

3.2 Equivalent Mean Crack Radius of Partially 
Deboned Fiber 

As mentioned in Section 3.1, the initial mean 
radius of microcracks 0c  to be considered after 
interfacial debonding between the matrix and fibers 
is chosen based on the state of fibers in the matrix. 
As in Fig. 3, interfacially debonded fiber has 
microcracks as many as those in the the debonded 
domain, and the volume  is given as  CV

3 3 3
2 2 2

4 4( ' ) ( 1)
3 3

= − = −C CV a a aπ α α π α β F

 
(13)

where 1 2' '/= a aα is aspect ratio (ratio of length to 
diameter) of  spheroidal  microcrack, 1 2/= a aα  is 
aspect ratio of  spheroidal  fiber, and CFβ  is ratio of 

'α  to α . Using Eq. (13), equivalent mean crack 
radius 0c  of partially debonded fiber can be 
calculated as 

33
0 2 ( 1)= −CFc a α β

 (14)

Likewise, the number of initial microcracks per 
unit volume 0N  to be considered after interfacial 
debonding between the matrix and fibers is related to 
fiber volume fraction 2φ  in Phase 2 where interfacial 
debonding takes place. Then, the relationship is 
established as 

2 0
−

−

×
= = × ×d fiber

d fiber NF
composite

V n
V N

V
φ β

 
(15)

where  and  denote the volume of 
debonded fiber and the volume of short fiber 
reinforced composites, respectively. 

−d fiberV compositeV

NFβ  is a scaling 
factor for the number of microcracks. Consequently, 
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the number of initial microcracks per unit volume 
 can be calculated as  0N

2
0 3

2

3
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= NFN
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φ β
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(16)

 

Equivalent crack

Microcrack
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Fig. 3.  Equivalent crack size 

 

3.3 Differential Coefficients for Damage Model 

As expressed in Eq. 12., in order to derive a 
constitutive equation for the damage model of short 
fiber reinforced composites, stiffness matrix 

* *( , )ijC E ν  in Eq. (3), which is a function of 
degradation Young’s modulus  and Poisson’s 
ratio 

*E
*ν , should be expressed in the form of a 

derived function of mean radius of microcracks c  
and the number of microcracks per unit volume . N

* * * * * ** *

* *

( , ) ( , ) ( , )∂ ∂ ∂∂ ∂
= ⋅ +

∂ ∂ ∂ ∂
ij ij ijC E C E C EE

c E c
ν ν ν

⋅
∂c
ν

ν
 (17)

* * * * * ** *

* *
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= ⋅ +

∂ ∂ ∂ ∂
ij ij ijC E C E C EE

N E N
ν ν ν

⋅
∂N
ν

ν
 (18)

Using Eq. (2), the differential coefficients of 
Eqs. (17) and (18) are derived as  

* * *

*

∂ ∂ ∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂
E E
c c

ν ω
ν ω

, 
* * *

*

∂ ∂ ∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂
E E
N N

ν ω
ν ω

 (19)

* *∂ ∂ ∂
= ⋅

∂ ∂ ∂c c
ν ν ω

ω
, 

* *∂ ∂ ∂
= ⋅

∂ ∂ ∂N N
ν ν ω

ω
 (20)

 
 

3.4 Finite Element Model 

A user-defined material subroutine with damage 
constitutive model composed of the partial 
debonding of fiber, crack nucleation and crack 
growth, is implemented into ABAQUS. The 
subroutine is written in FORTRAN language. The 

model is composed of the stage of deriving an 
effective stiffness matrix using input material 
properties, the stage of evaluating the evolutionary 
interfacial debonding between the matrix and 
perfectly boned fibers, the stage of deriving a 
degradation stiffness matrix caused by the 
occurrence of microcracks, the stage of confirming 
the stability of microcracks and calculating the size 
of growing cracks, and the stage of confirming the 
occurrence of microcracks and deriving the number 
of increased cracks.  

 
3.5 Numerical Simulation for Short Fiber 
Reinforced Composites 

The simulations were performed under 
different conditions by linking the user defined 
material subroutines (UMAT, VUMAT) formulated 
in Section 3.4 to ABAQUS 6.5. First, subroutine 
UMAT was applied in order to understand the 
overall damage behavior of short fiber reinforced 
composite. The simulations shown in Figs. 4 ~ 6 
were performed to understand the influence of fiber 
parameters such as fiber volume fraction φ  and 
aspect ratio of fiber and strain rate &ε . In addition, 
subroutine VUMAT was applied in order to test the 
effectiveness of damage behavior caused by 
crushing and simulation was performed for a 
rectangular tube crushing at high speed as in Fig. 6 
in order to understand fracture observed in crushing.  

 

P

X2

X1

Size (mm) : 15(W)x100(L)x4t
EL. Type   : C3D20R  

Fig. 4.  Tensile stress simulation condition 
 

V( )t

X2

X1

Size (mm) : 15(W)x100(L)x4t
EL. Type   : C3D20R

= ⋅& Lε

 

Fig. 5.  Compressive stress simulation condition 
 

The material properties of short fiber reinforced 
composite used in this simulation are adopted from 
[10] (see Table 1). Theses values are chosen from the 
literatures and do not correspond to a specific material. 
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Fig. 6.  Crushing simulation condition and geometry 
 

Table 1.  Properties of short fiber reinforced composite 
for numerical simulation 

Properties of short fiber reinforced composite Value 
Young's modulus of matrix, , MPa mE 3e3 
Young's modulus of fiber, fE  , MPa 72e3 
Poisson's ratio of matrix, mν  0.35 
Poisson's ratio of matrix, fν  0.17 
Parameter of  Weibull's statistics function, ,  MPa 0S 163.5 
Parameter of Weibull's statistics function, M  4.0 
Aspect ratio of spheroid fiber, α  5.0 
Density of composite, ρ ,  3/tonne mm 1.4e-9 
Volume fraction of fiber, φ  0.3 
Coefficient of friction, fµ  1.0e10 
Threshold stress for the nucleation of microcracks, 

noσ , MPa 1e4 

Cohesive stress, 0σ , MPa 0 
Scaling factor of crack speed, β  1e-6 
Experimental stress for crack nucleation, 1σ , MPa 2e3 
Plane strain fracture toughness, ICK , Pa.m 10 

 

 

4.  Results of Simulation  

4.1 Equivalent Mean Crack Radius of Partially 
Debonded Fiber 

Fig. 7 shows the result of simulated stress-
strain behavior when initial volume fraction φ  was 
applied to short fiber reinforced composites. Here, φ  
was applied for 0.1, 0.3 and 0.5. With the increase of  
φ , the stiffness of short fiber reinforced composite 
increased but its strain of yield decreased. Fig. 8 
shows change in volume fraction 2φ  of partially 
debonded fiber. According to the figure, when φ  is 
large, 2φ  reached the maximum volume fraction at 
low strain. Fig. 9 shows change in the mean radius 
of microcracks c  as a function of φ . In the figure, 
when φ  is low, the strain of initial crack growth is 
somewhat slower than that in fibers of different 

volume fractions but crack growth is faster when the 
strain exceeds a specific level. This is an important 
characteristic explaining the reinforcing function of 
short fiber. Fig. 10 shows the effect of partially 
debonded fiber on the elastic behavior with the 
increase of strain. If partially debonded fibers are not 
considered, stiffness as well as yield strain increases.     
Accordingly, if the degradation caused by partially 
debonded fiber is not considered, the properties of 
short fiber composites cannot be predicted 
accurately. 

The relationship between the aspect ratio of 
fiber α  and stress-strain behavior is shown in Fig. 
11. Here, simulation was performed with varying  α   
from 5 to 10 and 20 while fixing  φ  at 0.3. According 
to the results, with the increase ofα , stiffness was 
improved but yield strength decreased. This 
characteristic can be explained with the results in 
Fig. 12 that predicted the change in  c  according to 
α . This is because, with the increase of α , the 
initial mean radius of microcracks 0c  caused by 
partially debonded fiber becomes relatively large 
and as a result crack growth causing the degradation 
of stiffness takes place at lower stress. Accordingly, 
it is very important to find the optimal condition of  
α . 

The effectiveness of a damage model 
formulated in this study was examined by comparing 
it with experimental data for overall uniaxial tensile 
response of short fiber reinforced composite [15], and 
the results are presented in Fig. 13. The behavior was 
similar to the prediction model. The properties of 
short fiber composite applied in this research are as 
in Table 2, and unmentioned properties are the same 
as Table 1. 

The predicted compressive behaviors while 
changing strain rate &ε  from 0.1/s to 0.3/s and 0.5/s, 
are presented in Fig. 14. When &ε  was low, damage 
proceeded at low strain and softening after they 
reached the ultimate strength were also observed at 
low strain before fracture. This can be explained 
with Fig. 15 that predicted change in the mean 
radius of microcracks c  is dependent on &ε . That is, 
as shown by the results, it is predicted that, when 
ε =0.05, c  at &ε =0.1/s is 2.5 times larger than that at 
&ε =0.5/s. As in Fig. 16 and Fig. 17, Young’s 

modulus  and Poisson’s ratio *E *ν  decreased from 
the moment that c  began to increase. In this way, 
crack growth is a major cause of the degradation of 
short fiber reinforced composite properties. Fig. 18 
shows the predicted distance sd of damage surface, 
which is a criterion for determining crack growth. 
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The strain from which sd  begins to become larger 
than 0 is coincident with the strain from which 
cracks begin to grow. 

The initial mean radius of microcracks  0c  and 
number of initial microcracks per unit volume  
observed in the interfacial debonding of fiber were 
predicted to be 0.0172mm and 97.615 (ea/mm3), 
respectively, when 

0N

φ =0.3 and α =5. 
In order to understand phenomena observed in 

actual impact conditions, a simulation was 
performed and the result is presented the results in 
Fig. 19. It was predicted that major fracture and 
strain take place on the front of the tube. 
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Fig. 7. Predicted tensile stress vs. strain for fiber volume  
fraction φ  of 0.1, 0.3, 0. 
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Fig. 8. Predicted evolution of volume fraction 2φ  for partially  
debonded fiber vs. strain for fiber volume fraction φ  of  0.1, 0.3, 0.5 
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Fig. 9. Predicted evolutions of mean crack size c  vs.  
strain for fiber volume fraction φ  of  0.1, 0.3, 0.5 
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Fig. 10. Effect of partial debonding on the elastic behavior 
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Fig. 11. Predicted tensile stress vs. strain for fiber aspect 
ratio α  of 5, 10, 20 
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Fig. 12. Predicted evolutions of mean crack size c  vs. 
strain for fiber aspect ratio α  of 5, 10, 20 
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Fig. 13. Comparison between the present prediction and  
experimental data [15] 
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Fig. 14. Predicted compressive stress vs. strain for strain 
 rate &ε  of  0.1/s, 0.3/s, 0.5/s 
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Fig. 15. Predicted evolutions of mean crack radius c  vs. 
strain for strain rate &ε  of 0.1/s, 0.3/s, 0.5/s 
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Fig. 16. Predicted effective Young's modulus  vs. strain 

for strain rate 
*E

&ε  of 0.1/s, 0.3/s, 0.5/s 
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Fig. 17. Predicted effective Poisson's ratio *ν  vs. strain 

for strain rate &ε  of 0.1/s, 0.3/s, 0.5/s 
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Fig. 18. The predicted distance from damage surface vs. 

strain for strain rate &ε  of 0.1/s, 0.3/s, 0.5/s 
 

 
Fig. 19. Result visualization for isometric view (stress 
unit = Pa) 

 
Table 2. Properties of short fiber reinforced composites for 

comparison  with experimental data [15, 7] 
Properties of short fiber reinforced composite Value 
Parameter of  Weibull's statistics function, ,  MPa 0S 600 
Volume fraction of fiber, φ  0.5 
Aspect ratio of spheroid fiber, α  19.25 

 
 

5.  Conclusions   

In the present study, the fracture process of 
short fiber reinforced composites was predicted by a 
numerical analysis method. A theoretical damage 
model was formulated using user-defined material 
subroutines (UMAT, VUMAT) of ABAQUS, and it 
was linked to the analysis procedure of ABAQUS in 
order to understand impact damage behavior. From   
this study, it is found that it is effective to predict 
elastoplastic behavior of short fiber reinforced 
composite with a short plastic area using the size of 
microcracks occurring in interfacial debonding and 

the number of microcracks per unit volume. Using 
these findings, a constitutive equation is formulated 
more easily and effectively than using effective yield 
functions and stress norm. 
In addition, it was found that the mechanical 
properties of short fiber reinforced composites are 
heavily affected by the volume fraction and aspect 
ratio of fiber, and that partially debonded fiber 
appearing newly in the behavioral process enables 
the effective prediction of stiffness and plastic strain 
and determines the size and number of initial cracks, 
so it must be considered in the damage model. In 
addition, impact simulation showed that short fiber 
reinforced composites are very sensitive to strain 
rate, namely, impact velocity and this suggests that it 
is most vulnerable to low-velocity impact. 
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