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Abstract 

Nondimensional parameters and equations 

governing the buckling behavior of rectangular 

symmetrically laminated plates are presented that 

can be used to represent the buckling resistance, for 

plates made of all known structural materials. 

Bounds for these nondimensional parameters are 

also presented that are based on thermodynamics. 

These bounds provide insight into potential gains in 

buckling resistance through laminate tailoring and 

composite-material development. As an illustration 

of this point, upper bounds on the buckling 

resistance of long rectangular orthotropic plates 

with simply supported edges and subjected to 

uniform axial compression and uniform shear are 

presented. The results indicate that the maximum 

gain in buckling resistance for tailored orthotropic 

laminates, with respect to the corresponding 

isotropic plate, is in the range of 33% for plates with 

simply supported edges ,under compression loading 

conditions. For the plates subjected to shear, the 

corresponding gains in buckling resistance are in 

the range of 90%  and occurs for plates with flexural 

anisotropy 

1  Introduction  

Laminated composite materials lend 

themselves to elastic tailoring of anisotropic 

structural components - a feature that allows 

structural designers to customize the stiffness-

critical response of structural elements such as flat 

plates and curved panels. The benefits of elastic 

tailoring may result in a reduction in structural 

weight or improved performance, which are very 

important to many widespread applications such as 

aircraft, spacecraft, and sporting goods. Typically, 

these benefits are obtained by simply ensuring that 

the laminate stiffnesses are different in the principal 

directions (an example of orthotropy), or by building 

in elements of anisotropy that couple response 

modes to obtain a desired effect (e.g., coupling of 

extension, contraction and inplane shear 

deformations).  

This paper is concerned with identifying the 

limits of benefit of elastic tailoring in buckling 

driven design. It appears not to be appreciated that 

there is a definite upper bound to the potential for 

elastic tailoring. By presenting the buckling 

performance of the optimal lay-up with respect to 

the quasi-isotropic lay-up, the fractional 

performance gain by elastic tailoring is clearly 

shown. Furthermore, by expressing flexural 

stiffnesses in terms of material invariant stiffnesses 

and lamination parameters [1,2] it is possible to 

deduce theoretical upper bounds to buckling 

performance for all possible laminated composite 

materials. Such information should prove useful for 

developing new materials. As an illustration of this 

point, upper bounds on the buckling resistance of 

long rectangular anisotropic plates with simply 

supported edges and subjected to uniform axial 

compression or uniform shear loads are presented. 

The results indicate that the maximum gain in 

buckling resistance for tailored orthotropic 

laminates, with respect to the corresponding 

isotropic plate, is in the range of 36% for orthotropic 

plates with simply supported edges, irrespective of 

the loading conditions. For plates with flexural 

anisotropy, the corresponding gains in buckling 

resistance are in the range of 90% for plates 

subjected to compression.  

2  Thermodynamic bounds for anisotropic plates 

 

Mansfield [3] gives the expression for the strain 

energy, Ub, of a flat anisotropic plate subject to 

flexural loading as  

 { } [ ]{ }∫∫=
A

T

b dxdyDU κκ *

2

1
 (1) 
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where κκκκ are curvatures, given in terms of 

transverse deformation, w and plate coordinates 

x, y. The reduced stiffness [D*] is given by 
 

 [ ] [ ] [ ][ ] [ ]BABDD
1* −−=  (2) 

 

where [A], [B]  and [D] are the in-plane, coupling 

and flexural matrices, respectively. 

 Relations between D*ij are found by 

ensuring that the strain energy in Eq. (1) is positive 

for all loading. This is done by enforcing that the 

determinant of [D*] is positive definite. This is 

conveniently done by first expressing them in terms 

of nondimensional parameters. To obtain a 

convenient nondimensional form of the total strain 

energy, the stiffness matrix [D*] is 

nondimensionalized by the geometric stiffness  

(D11
*
D22

*
)
0.5 
which has the advantage that it does not 

significantly vary with lamination [4], 
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and where the additional nondimensional parameter  

νBf  is  

    
*
22

*
11

*
12

DD

D
Bf =ν  (5) 

and represents a form of flexural Poisson’s ratio.  

 

Typically, in defining the conditions on the 

elastic material parameters, positive definiteness of 

the strain energy density is enforced, which is valid 

at every material point of a structure.  Enforcing this 

condition on the integrand of Eq. (1) results in the 

requirement that the matrix defined by Eq. (3) be a 

positive-definite matrix, which yields relationships 

that  αB, βB, δB, γB  and  νBf  must obey. Applying 

Sylvester's criteria for positive definiteness of a 

matrix yields the following requirements [5]: 
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 (6) 

The second and third of these conditions give the 

following bounds on ν B f and βB; that is, 

 -1 and 11 ><<− BBf βν . (7) 

Because no apparent upper bound on β B is given by 

Eqs. (6), bounds for γB and δB are also not apparent. 

As a result, in the present study, bounds on the 

nondimensional parameters are sought with respect 

to the buckling response of simply supported and 

clamped plates, not the material behaviour.  For this 

class of problems, the buckling response is 

completely independent of νBf and positiveness of 

the total strain energy is used, instead of positive 

definiteness of the strain energy density, to eliminate 

νBf from consideration. Specifically, a modified form 

of the total strain energy is sought that is 

independent of νBf and whose positiveness can be 
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guaranteed by enforcing positive definiteness of the 

corresponding integrand. Thus, an alternate form of 

Eq. (1), the total strain energy of a plate, is used that 

produces structural-response bounds on the 

minimum number of nondimensional parameters 

required to characterise the buckling behavior of 

simply supported and clamped plates as follows. 

 The desired form of Eq. (1) is obtained by 

noting that it is possible to eliminate νBf as a variable 

governing the structural response for several cases of 

practical interest in design; that is, plates for which 

the transverse buckling displacement  w = 0  on the 

boundary.  This simplification is done by integrating 

Eq. (1) by parts using Green's Theorem and 

enforcing w = 0 on the boundary of a finite-length 

plate or the periodic unit of an infinitely long plate 

to obtain 

 dxdy
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Using this expression, the strain energy components 

containing βB  and  νBf may be reduced to a single 

term in βB  ; that is, 
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or      
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  (9b) 

which allows the total strain energy to be written as  

 { } [ ]{ }∫∫=
A

Tb dxdyD
DD

U
κκ *
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(10) 

 

where [ ]mod*D  is a modified nondimensional 

stiffness matrix that is given by 
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or by 
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energy, respectively. Neither representation of 

[ ]*
modD  is satisfactory for the purpose of finding 

bounds by enforcing positive definiteness of the 

integrand, however, as the former has a value of zero 

for a leading diagonal term, which is impossible for 

the requirement of positive strain energy, whilst the 

latter does provide for the contribution of  
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in its representation of strain energy. It is more 

useful to represent the strain energy associated with 

βB as a linear combination of the terms given by Eqs. 

(9); that is, 
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which allows the strain energy to be represented as 

{ } [ ]{ }∫∫=
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where [ ]1mod*D  is another modified nondimensional 

stiffness matrix that is given by 
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for which 12 =+ nm   must be satisfied in order for 

Eqs. (10) and (12b) to remain equivalent, where m 

and n are real-valued numbers. The modified 

stiffness matrix [ ]1mod*D  is more general than 

[ ]mod*D  because assumptions have not been made 

concerning the relative contribution of β to 
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A sufficient condition for positive-valued total 

strain energy of deformation is that the modified 

stiffness matrix [ ]1mod*D  be positive definite.  

Applying Sylvester's criteria, once again, for 

positive definiteness of a matrix yields the following 

requirements: 
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Combining the latter of these relationships with 

12 =+ nm  results in the following cubic polynomial 

in Bnβ  
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For any given values of  δB  and  γB, Eq. (15) gives 

the minimum, value of  βB that corresponds to 

positive strain energy. Its dependency on n is of little 

consequence because the minimum value of  βB  is 

determined directly by ensuring that the solution to 

Eq. (15) has three real-valued roots, which, in turn, 

is satisfied by ensuring that the discriminant of the 

third-order polynomial in Eq. (15) is zero; that is, 
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which is independent of the parameters  m  and  n. 

Simplification of Eq. (16) yields a fourth-order 

expression in  βB  given by  
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Equation (17) is used herein to obtain the minimum 

value of  β B  for given values of  δ B  and  γ B. It is 
noted that for some values of δ B and γ B there are 

multiple solutions for β Β that satisfy Eq. (17).  For 

these circumstances, the appropriate choice of  the 

minimal β B value is the one that also satisfies the 

thermodynamic conditions given in Eq.(14), and by 

so doing, provides a unique solution for β B. Upon 

finding the minimal value for  β B, Eq. (15) is used to 

determine the value of the parameter  n. It is useful 

to observe that Eq. (17) exhibits identical 

dependence on  δ B  and  γ B, meaning that  δ B  and  

γB   have identical effects on the minimal value of β 

B because they are interchangeable. The contours of 

minimal β B , as given by Eq. (17), are depicted as a 
function of δ B and γ B   in Fig. 1. It is noted that 
these contours ands indeed all relationships derived 

in Section 2 hold for symmetric laminates in which 

the [B] matrix is zero. In fact, Fig. 1 was first 

derived for symmetric laminates [4]. The advance, 

made here, is that the form of strain energy for the 

nonsymmetric plate is governed by the reduced 

stiffness matrix [D*], as formulated by Mansfield 

[3] and used by authors such as Ashton [6] may be 

used to find thermodynamic bounds on the [B] 

matrix. Currently, we have bounds on [D] and [D*]. 

By finding bounds on [A] matrix we can find by 
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elimination , thermodynamic bounds on [B] matrix. 

Thermodynamic bounds on [A] matrix are found in 

the next section by considering its inverse, [A]
-1.
 

 

 

 

 
Fig. 1 Minimum value of βB for given values of 

δB  and γB. 

3 Thermodynamic Bounds on [A] matrix 

Thermodynamic bounds on the in-plane 

stiffnesses, [A] matrix, may be found by similar 

arguments to those made in Section 2. Mansfield [3] 

shows that the strain energy due to membrane 

loading is: 

{ } [ ]{ }∫∫=
A

T

M dxdyNaNU
2

1
 (18) 

with [a] = [A]
-1
. Using a similar nonodimensioning 

process done in Section 2, the strain energy may be 

written as: 
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and where the additional nondimensional parameter  

νAf  is  
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As done in Section 2, positiveness of the strain 

energy density, according to Sylvester’s Theorem 

gives 
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as thermodynamic constraints on material properties. 

The second and third of these conditions give the 

following bounds on ν A f and βA; that is, 

 -1 and 11 ><<− AAf βν . (23) 

As done in Section 2 a fourth order polynomial in βA 

is derived, 
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4 Thermodynamic Bounds on [B] matrix 

We are now in a position to find the 

thermodynamic bounds on the [B] matrix. These 

bounds are implicit and are developed by combining 

Eqs. (2),(17) and (24) ensuring constraints (14) and 

(25) are satisfied. It is noted that constraints 

expressions pertinent for symmetric laminates, 

concerning the [D] matrix are found using Eqs. (14) 

and (17). 

Further relations between D*ij are found from 

trigonometry using lamination parameters. 

5. Buckling Performance 

The buckling performance of long rectangular 

plates with simply supported edges under either 

compression or shear loading is considered. 

Nonsymmetric plates clearly reduce the effective 

bending stiffness as shown in Eq. (2) and reported 

by Ashton [6]. As such, only plates with flexural 

anisotropy are considered henceforth. 

Weaver [7] gave an approximate expression for 

buckling coefficient, Kx, of a flexurally anisotropic 

plate, with simply supported edges, subject to 

compression loading as: 
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where Nx is the critical value of the compression 

load at the point of buckling. Note, that the 

subscripts have been dropped from the 

nondimensional parameters in Eq. (26) and reflect 

symmetrical variants of those defined in Eq. (4). It is 

noted that for orthotropic plates, Eq. (26) simplifies 

to 
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π
+== 12
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DD
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which provides Kx  =  4 for isotropic materials (with 

β =1). From Eq. (26) it is observed that flexural 

anisotropy, via Eq. (4) reduces buckling loads and 

confirm earlier work [8,9,]. 

Following  Reference [4] the maximum 

buckling load, normalized with respect to the quasi-

isotropic laminate is 
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where 

 
( )
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DD 2
1

2211=ε  (29) 

.and Diso is the quasi-isotropic flexural stiffness. 

Reference [4] gives bounding values for the 

nondimensional parameters in Eq .(26) as 

 1,

31

<

<<−

γδ

β
 (30) 

noting that when β = 3, ε = 2/3 [4]. Then the 
maximum value for buckling load is found to be 

 3

4

maxi

=










sox

x

N

N
 (31) 

for materials where E11/E22 tends to infinity (where 

E11, E22 are Young’s moduli of a single ply). This 

result shows that there is an upper limit to tailoring 

lay-ups. It also shows that there is limited potential 

for elastic tailoring and the optimal lay-up provides 

only 33% better performance than the quasi-

isotropic lay-up. 

Whilst it is known that the presence of flexural 

anisotropy reduces buckling loads under 

compression loading (e.g. [7]) its effect is different 

for shear loading as it either raises or lowers 

buckling loads depending on the sign of shear (e.g. 

References [9] and [10]). An approximate formula 

for the shear buckling coefficient, Kxy, that includes 

the effect of flexural anisotropy, developed recently 

[11] 
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quantifies matters. It is noted that there is a strong 

linear dependency on γ and even more so, on  δ as 
reflected in the value of their coefficients. Noting 

that  γ  and  δ   may be positively or negatively 

valued, provides the possibility of raising or 

lowering buckling loads depending on the sign of 

shear loading and the sign of  δ and γ. For example, 

if positive shear is applied to the plate then an 

increase in performance may be gained by using 

laminates containing significant amounts of negative 

flexural anisotropy, i.e. negative  δ  and  γ  values. 
For negative shear the converse holds, i.e. laminates 

with positive flexural anisotropy raise buckling 

loads. Finally, it is of merit to emphasise that 

changing the sign of flexural anisotropy of the 

laminate is done by reversing the sign of the fibre 

angle for each layer in the laminate.  

The approximate nature of  Eq. (32) is such 

that it is conservative over the entire range of 

nondimensional parameters and is observed to under 

predict buckling loads by approximately 10% in the 

vicinity of maximum buckling loads. As such, 

approximate bounds of performance are found by 

using a near-optimal lay-up in Eq. (32).  Previously 

[8], it was found that the orthotropic lay-up 

containing the fibre angle 60
o
 was optimal for shear 

of a long plate with simply supported edges. To 

make use of flexural anisotropy, a ply orientation of  

–60
o
 gives large negative  δ  values and near 

maximum buckling loads. The approximate upper 

bound performance for shear buckling of a plate 

with infinitely large values of orthotropy ratios,  

Q11

Q22

 and 
Q11

Q12 + 2Q66

  is found by using a value of 

ply orientation of  –60
o
 into Eq. (14) for the non-

dimensional parameters.  Then, 

 9.1

i

≈
soxy

xy

N

N

 (33) 

where accuracy has been retained to 1 decimal place 

to reflect the approximate nature of  Eq. (32). Of 

significance is the greater scope for anisotropic 

elastic tailoring using flexural anisotropy. 

Incorporating flexural anisotropy increases the upper 

bound on buckling load from 136% [8] to 190% of 

the quasi-isotropic lay-up, which is approximately a 

50% increase. 

6. Conclusions 

Nondimensional parameters and equations 

governing the buckling behavior of rectangular 

symmetrically laminated plates have been presented. 

These nondimensional parameters can be used to 

represent the buckling resistance of rectangular 

plates, made of all known linearly elastic structural 

materials, in a very general, insightful, and 

encompassing manner. In addition, these parameters 

can be used to assess the degree of plate orthotropy, 

to assess the importance of anisotropy that couples 

bending and twisting deformations, and to 

characterize quasi-isotropic laminates quantitatively. 

Bounds for these nondimensional parameters have 

also been presented that are based on 

thermodynamics. Knowing these bounds provides 

insight into potential gains in buckling resistance 

through laminate tailoring and composite-material 

development. As an illustration of this point, some 

of the bounds presented herein have been used to 

determine upper bounds on the buckling resistance 

of long rectangular orthotropic plates with simply 

supported subjected to uniform axial compression 

and uniform shear. The results indicate that the 

maximum gain in buckling resistance for orthotropic 

plates, with respect to the corresponding isotropic 

plate, through laminate tailoring is in the range of 

33% for plates with simply supported edges under 

compression loading. For shear, flexurally 

anisotropic plates are found to be better performing 

than orthotropic ones. It was shown that it is 

possible to increase buckling performance by 50% 

by using flexural anisotropy. 
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