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Abstract  

A three-dimensional continuum damage 
mechanics-based material model has been 
implemented in an implicit Finite Element code to 
simulate the progressive degradation of advanced 
composite materials. The damage model uses seven 
damage variables assigned to tensile, compressive  
and non-linear shear damage at a laminae level. The 
objectivity of the numerical discretization  is assured 
using a smeared formulation.  

 The material model was benchmarked against 
experimental uniaxial coupon tests and it is shown 
to reproduce key aspects observable during failure, 
such as the inclined fracture plane in matrix 
compression and the shear band in a ±45° tension 
specimen. 
 
 
1 Introduction 

Strength reduction caused by low velocity 
impact is one of the principal weaknesses of 
laminated composite structures. Unlike ductile 
metals, which can absorb large amounts of energy 
via plasticity without significant loss of strength, 
brittle composites absorb energy by elastic 
deformation and irreversible damage. Impact 
induced delaminations result in a drastic reduction in 
strength, stiffness, and stability of the laminate, 
explaining why impact is of such concern to the 
designers and users of composite structures. To date, 
many composite structures are over designed to 
compensate for their low damage tolerance. The full 
potential of composite materials has to be yet 
realised.  

 Many investigations of impact damage in 
carbon fibre composites are based on the testing of 
small laminates rather than structural elements or 
full-scale structures. These can give comparative 
data on different fibre/resin systems and different 
ply lay-ups. However, in addition to the material 

properties, other factors can influence the response 
of a composite structure under impact. These include 
the geometry of the structure, the local support on 
substructures and the dynamic response of the 
structure as a whole.  

Validation of structural performance by 
extensive testing can be prohibitively expensive. 
Finite element (FE) modelling of impact can replace 
some of the mechanical testing and thus lead to an 
improved understanding, and a more efficient 
design, of components and structures subjected to 
impact.  The present work is intended to develop an 
in-plane continuum damage model which can be 
used in combination with interface elements ( for the 
modelling of interlaminar damage)  to model the 
effects of low velocity impacts onto unidirectional 
(UD) carbon/epoxy and woven/epoxy composite 
laminates from damage onset to final structural 
collapse. The final goal being to enable the 
prediction of impact damage in complex structures, 
such as composite stiffened panels.  

 
2 Numerical modelling of composite damage 

Over the last two decades Continuum Damage 
Mechanics (CDM) has been employed extensively 
to describe the progressive degradation experienced 
by mechanical properties of materials prior to the 
initiation of macrocracks. The CDM approach, 
originally developed by Kachanov [1], provides a 
method which can accurately determine the full 
range of deterioration in a composite material, from 
the virgin material, with no damage, to the fully 
disintegrated material. Material properties over a 
representative volume are degraded gradually as 
damage accumulates. Unloading of a damaged 
structure returns the stress to zero, with a reduced 
stiffness, while the strain may be fully recovered or 
reduced to a plastic residual strain [2,3]. For a 
general and detailed presentation of CDM, the 
reader is referred to Lemaitre and Chaboche [4]. 
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Recently the basic concepts of CDM have been 
successfully employed to model the progressive 
degradation of advanced composite materials. 
Among others, Iannucci et al. [5] developed and 
implemented, in the explicit FE code LS-DYNA, a 
2D CDM-based model to predict the dynamic 
response of woven composite laminates under 
impact loading. Successively, Donadon [6] 
improved and extended that model to include 3D 
effects. In contrast, the models, available in the 
literature, that make use of an implicit solver are 
either based on the assumption of plane stress or 
consider a single isotropic damage variable. 3D 
anisotropic damage models are, to the authors’ 
knowledge, only available for explicit FE code and 
have been applied  to plates or other simple 
geometries as CPU requirements increase 
dramatically for complex geometries. 

The present model is implemented within an 
implicit FE code and is not based on the assumption 
of plane stress; it allows for a full 3D stress analysis 
to be carried out, which is essential for modelling 
impact damage. While this difference is not readily 
appreciable when the fibre fracture in tension is 
investigated, it becomes noticeable when matrix 
fracture and fibre fracture in compression 
(microbuckling and fibre kinking) are considered. 
Another feature of the present model is that 
according to experimental evidence, the shear 
behaviour, in all of the three shear directions is 
markedly non-linear and irreversible, even before 
the localization process. 

 
3 Constitutive damage model 

This section describes in detail the 3D energy 
based damage model developed and implemented in 
the  implicit finite element code ABAQUS/Standard 
[7] by the user subroutine UMAT.  
3.1 Effective stress-stain relationship 

In CDM models a fictitious effective stress σ~  
is introduced. This fictitious stress acts on an 
effective resisting area (Aef), which represents a 
reduction of the original area A due to material 
degradation caused by the presence of microcracks 
and stress concentration in the vicinity of cracks. In 
general form, the effective stress σ~  is related to the 
actual Cauchy stress σ in the undamaged material 
using the damage effect tensor M, as, 

σ   = M σ~ .                                                              (1) 

Different hypotheses based on equivalence of 
strain or elastic energy have been proposed to 
evaluate M and hence establish a relation between 
the damaged and undamaged stiffness. Lemaitre and 
Chaboche [4] proposed the “principle of strain 
equivalence” which states:   

“any deformation behaviour, whether uniaxial 
or multiaxial, of a damaged material is represented 
by the constitutive laws of the virgin material in 
which the usual stress, σ , is replaced by the 
effective stress, σ~  .”  

Accordingly, for example the uniaxial linear 
elastic law of a damaged material is written as, 

E
σε
~

=  = ( )Ed−1
σ

,                                                  (2)      

where E is the Young’s modulus of the virgin 
material and d is the damage parameter. Based on 
this principle the compliance relationship for 
orthotropic elastic material can be expressed in 
terms of effective stress σ~   as, 

σ~ = H0
-1 ε ,                                                             (3) 

 where H0
-1  is the inverse of the compliance matrix 

of the undamaged lamina. Combining Eq. (1) and 
(3) results in a constitutive equation expressed by,  

σ = M H0
-1ε.                                                           (4) 

These basic concepts are used to develop a 
damage model with seven different damage 
variables  (di) introduced to take into account typical 
mechanisms of fracture of composite laminate. 
These are fibre fracture in tension (dt

1) and 
compression (dt

1), matrix failure in tension (dt
2) and 

compression (dc
2) and three other damage variables 

to account for non-linear shear behaviour and 
irreversibility (d12, d13, d23). Each damage variable is 
a monotonically increasing function such that 0 ≤ di 
≤ 1 (where d=0 represents the initial undamaged 
material and d=1 represents a state of complete loss 
of integrity, in which no stresses can be transferred) 
and is activated by a specific physically-based 
failure criterion. Once a failure criterion has been 
exceeded, the stresses are degraded following a 
linear softening law.  

4 Damage criteria 

The determination of the domain of elastic 
response under a complex stress state is an essential 
component for an accurate damage model. The 
failure envelop is determined by four damage 
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activation functions associated with damage in the 
longitudinal and transverse directions. These 
damage activation functions are defined as, 

ct
i

ct
i

ct
i rfF ,,, −= ,                                                (5) 

where  are the failure criteria, which depend on 
the stress/strain tensors and the material properties, 
and  is the elastic domain threshold.  

ct
if ,

ct
ir

,

The elastic domain threshold defines the 
amount of elastic strain that can be applied to the 
material before further damage is accumulated. It 
assumes initially the value 1 for the undamaged 
material and then increases with the damage.  

In the following, the subscript 1 refers to the 
fibre direction, the subscript 2 refers to the in-plane 
transverse direction and the subscript 3 refers to the 
through-thickness direction. The superscript t and c 
refer to tensile and compressive failure criteria, 
respectively. 

 
4.1 Fibre tensile failure 

Since the stresses in fibre direction are 
predominantly transmitted through the fibre because 
of their high stiffness and strength in comparison to 
the matrix properties, the damage initiation due to 
tensile loading in longitudinal direction is predicted 
using a non-interacting strain based failure criterion. 
The resultant damage activation function is given 
by, 

( ) 011

2

11
1

1111 ≥−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= t

T

t r
X
EF εε ,                                 (6) 

where  is the elastic domain threshold and is 
given by, 

tr11
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⎛
=

2

11
1

11 ,1max ετ
τ

T

t

X
E

r ,                                  (7) 

where E1 is the Young’s modulus in the 
longitudinal direction and XT is the axial tensile 
strength. In Eq.(7) τ represents the fictitious time 
that distinguishes each load increment during the FE 
analysis. 

When this criterion is fulfilled, the material 
properties are degraded to account for  the damage 
in the structure. The damage variable dt

1 is defined 
in this model to linearly degrade the respective 
Young’s modulus E1 and Poisson’s ratio ν12. This 

damage variable is defined so that it has the value 0 
at onset of failure, where ε11 = ε0

11, and the value 1 
at final failure (ε11 = εf

11), Fig.1. 
 

 
Fig.1.  Constitutive law in tension 

 
The bilinear damage evolution law can then be 

expressed in the following general form, 

)1(
11

11
0

11
0

11

11
1 ε

ε
εε

ε
−

−
= f

f
td .                                   (8) 

4.2 Fibre compressive failure 

In the present formulation fibre kinking is 
formulated in a similar manner to the tensile failure. 
Once an initiation (failure) strain is reached, damage 
initiates and stress is gradually reduced to the 
residual strength value, typically the crushed fibre 
strength. As an initial estimate, this was taken as the 
matrix strength. This allows the kink or matrix crush 
zone to have a residual strength, unlike the tensile 
failure modes. An extension of this model, suggested 
by Iannucci et al., in [5], would introduce a further 
compressive final failure strain to take into account 
the energy dissipated due to plastic deformation of 
the crushed zone.  

A strain based criterion is assumed as the 
damage activation function. This is given by, 

( ) 011

2

0
11

11
1111 ≥−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= cc rF
ε
ε

ε ,                                      (9) 

where   is the initial failure strain in compression 
and  is the elastic domain threshold which is 
given as, 

0
11ε

cr11
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( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

0
11

11
11 ,1max

ε
ε

τ
τ

cr .                                      (10) 

The damage growth law assumes a similar 
form to that used for predicting failure in tension, 

⎟⎟
⎠

⎞
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⎛
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−
=
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0
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0
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11
11 1

ε
ε
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ε
f

f
cd ,                                         (11) 

where  is the strain at final failure. f
11ε

As discussed above, in order to model matrix 
crushing and fragment interaction effects within the 
crushing zone of the material, the stress  is not 
completely degraded but is reduced to a minimum 
residual stress which is assumed comparable to the 
transverse compressive strength of matrix, . 
The resultant stress-strain behaviour in compression 
is shown in Fig.2. 

11σ

res
11σ

 

 
Fig.2.  Constitutive law for fibre in compression 

4.3 Matrix failure 

4.3.1 Failure criteria 
Experimental evidence on the fracture surface 

of specimens failing by matrix compression suggests 
that unidirectional layers behave in a very brittle 
manner at failure. Following this observation, Puck 
and Schneider [8], formulated a failure criterion for 
matrix failure based on the Mohr-Coulomb criterion. 
The fundamental hypothesis on which the Puck’s 
criterion is based is that the fracture is exclusively 
created by the stresses which act on the fracture 
plane. In the case of inter-fibre fracture on an 
inclined plane parallel to the fibre these stresses are 
the normal stress σn , and two shear stresses τnl and 
τnt as shown in Fig.3. 

 

 
 

Fig.3.  Schematic representation of the fracture plane 
 
The stress σn represents the stress 

perpendicular to the fracture plane (σ⊥), the shear τnl 

is the transverse-longitudinal shear stress τ⊥⎥⎥  and τnt 

is the transverse- transverse shear stress τ⊥⊥. 
When σn ≥ 0   the fracture criterion can be 

easily stated as, 

1
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,                           (12) 

where  R┴ ,R┴┴, and R┴//  are the strengths related to 
the fracture plane.  In particular for σn ≥ 0  the 
fracture angle (θ) reduces to 0° degrees and 
therefore R┴ ,R┴┴, and R┴// reduce to YT , SL and ST, 
which are transverse tensile strength, in-plane shear 
strength and out-of plane shear strength, 
respectively.  

Applying this criterion to predict transverse 
tensile matrix fracture results in a damage activation 
function that read as, 

0
~~~

22

2
23

2

12

2

2
22 ≥−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= t

TLT

t r
SSY

F
ττσ

.              (13) 

While for σn> 0 the angle of the fracture plane is 
always assumed equal e to 0°, the same cannot be 
asserted when σn< 0 and consequently the strengths 
related to the fracture plane are hardly available. 
Based on the experimental evidence that a tensile 
stress σn> 0 promotes fracture, whereas a 
compressive stress σn< 0 impedes shear fractures, 
Puck concluded that for σn< 0 the shear stresses τnt 

and τnl have to cause fracture against an additional 
resistance, which increases with increasing |σn| like 
an “internal friction”. This idea has been developed 
further by Davila and al. in the LaRC04 failure 
criteria [9-10]. The proposed fracture criterion for 
matrix in compression is given by, 
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1~
~

~
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  for σn < 0,    (14) 

where 
)2tan(

1

0θ
µ −=T   and  

T

T
LL S

S µ
µ =   are 

referred to as “friction coefficients”, and  θ0 is the 
angle of the fracture plane for pure compression in 
the direction perpendicular to the fibre that usually 
assumes a value ≈53°. These “friction coefficients” 
have been used by previous authors [8] even thought 
there is no real friction, at least, not until the fracture 
surfaces are created.  

For a general loading situation, the angle of the 
fracture plane with the through-the-thickness 
direction might assume a different value than the 
one for pure compression (≈53°). However, in the 
present model we assume that the fracture angle can 
only take two discrete value: 0° (for σn>0 ) or 53° 
(σn<0). Applying this fracture criterion to predict 
transverse compressive matrix fracture results in a 
damage activation function that read as, 

0~
~

~
~

22
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22 ≥−⎟⎟
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−
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nLL
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nTT

ntc r
SS

F
σµ

τ
σµ

τ
.     (15) 

4.3.2 Damage evolution  
Due to the fundamental hypothesis that the 

fracture is exclusively created by the stresses acting 
on the fracture plane (lnt), see Fig.4, the transverse 
compression fracture criterion requires that the 
“effective stress tensor”, σ~ (namely the stress tensor 
acting on the cross-sectional area effectively 
resisting the loading (A-Adamaged)) has to be rotated 
into the fracture coordinate system, using the 
standard tensor transformation rules.  

If the rotated stress components satisfy one of 
the damage activation function Eq.13 or Eq.15, 
depending on the sign nσ~ , the stress components of 

the effective stress tensor ( tln
~σ ) acting on the 

fracture plane have to be degraded as, 

n
n

nct
n d σ

σ
σ

σ ~)~
~

1( ,
2−= ,                                      (16a) 

nl
ct

nl d ττ ~)1( ,
2−= ,                                                 (16b) 

nt
ct

nt d ττ ~)1( ,
2−= ,                                                 (16c) 

where dt,c
2 is the damage variable, which evolves 

following the evolution law, 

⎟⎟
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⎞
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⎝

⎛
−

−
=

MAT

MAT

MAT
f

MAT

f
MATctd

ε
ε

εε
ε 0

0
,

2 1 ,                           (17) 

where 222
nlntnMAT γγεε ++=  represents the total 

shear component acting on the fracture plane,   

and  are the shear strains at the onset of 
damage and at failure (d

0
MATε

f
MATε

2 =1), respectively. as shown 
in Fig.7. 

 

 
Fig.4.  Local model behaviour for transverse failure 

 
In the above figure (Fig.4) 

222
nlntnMAT ττσσ ++= represents the driving 

stress acting on the fracture plane and it corresponds 
to the total strain components which actually 
‘drives’ the damage evolution. In a more general 
form the true Cauchy stress tensor (σlnt), acting on 
the whole area (A), can be expressed as, 

( ) t
ct

tt dM ln
,

2lnln
~σσ = ,                                          (18) 

where Mlnt  is the damage tensor.  
In the fracture coordinate system (lnt) the damage 
tensor is a diagonal tensor but, in general, this 
condition no longer holds once this tensor is rotated 
back into the lamina coordinate system.  

 

5   Non linear shear-stress behaviour 

According to experimental evidence, the shear 
behaviour of composite materials, in each of the 
three shear directions, is markedly non-linear and 
irreversible. In general the non-linear material 
behaviour of composites is ascribed to two distinct 
mechanical processes: plasticity and loss of stiffness 
due to progressive damage. A number of different 
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approaches to the modelling of the shear behaviour 
can be found in the literature. Degradation 
phenomena have been described, in the literature, by 
either continuum theories of plasticity [11], 
continuum damage mechanics [4] or combining both 
theories [12].  

In the present formulation we adopt the shear 
model proposed by Donadon [6]. A polynomial 
cubic stress-strain relationship is used to represent 
the non-linear behaviour in shear which is given by,  

ijijijijijij csigncc γγγγγτ 3
2

2
3

1 )()( +⋅⋅−= ,                 (19) 

where c1, c2 and c3 are coefficients determined by 
fitting the polynomial expression to experimentally 
obtained stress-strain curves. 

Two state variables are introduced: the shear 
damage dij and the permanent inelastic strain γin

ij. 
A strain based criterion is assumed for the damage 
activation function that read as, 

0)(
2

0 ≥−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= n

ij
ij

ij
ij

Shear
ij rF

γ
γ

γ ,                                 (20) 

where  is the maximum allowable elastic strain 

and   is the elastic domain threshold which is 
given by, 

0
ijγ

n
ijr

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

2
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ijr

γ
γ

τ
τ

.                                      (21) 

After detecting shear damage initiation, the 
damage evolution is defined by a bi-phase law 
(strain based). The first damage phase, curve OA in 
Fig.5, is associated with the gradual stiffness 
reduction due to matrix microcracking while the 
second phase, curve AB in Fig.5, represents the  loss 
of load carrying capability in shear as the fracture 
energy in shear is dissipated. 

The damage evolution law is given by, 

dij=λ1(γij)+ λ2(γij)- λ1(γij) λ2(γij),                          (22)  

where the functions λ1(γij) and λ2(γij) are defined as 
follows, 

for  ==>  max0
ijijij γγγ ≤≤ ijaγλ =1  and 02=λ  
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ijijij γγγ ≤≤max
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1 ijaγλ = and ⎟

⎟
⎠

⎞
⎜
⎜
⎝
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−
=
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ij

ij
f

ij

f
ij

γ
γ

γγ
γ

λ
max

max2 1 ,           

where   and  are the failure strain and the 

maximum strain, respectively. 

f
ijγ max

ijγ

( )
ij

ijij GG
a

γ∆
∆

= 0\
 is 

a material constant which expresses the gradual 
shear stiffness (Gij) reduction obtained in cyclic 
loading-unloading shear testing using (+45/−45)n 
specimens.  

 
 

Fig.5.  Constitutive model in shear 
 
Assuming small strain hypothesis, the total 

strain can be additively decomposed into elastic  

and damage  parts, 

e
ijγ

d
ijγ

d
ij

e
ijij γγγ += .                                                         

Although the damage process is irreversible 
thermodynamically, the deformation due to damage 
itself can be partially or completely recovered upon 
unloading. Thus, the damage strain component can 
also be decomposed into elastic (reversible), , 

and inelastic (irreversible), , parts, 

ed
ijγ

in
ijγ

in
ij

ed
ij

d
ij γγγ += .                                                       (23) 

During the unloading process only the elastic strain 
  and the elastic-damage strain are totally 

recovered. The shear stress during unloading can be 
defined as, 

e
ijγ ed

ijγ

for  in
ijij γγγ >>max ,  
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( ) in
ijijijij

ij

ij
ij dG γγ
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γ
τ −−= 10 ,                           (24a) 

where )(maxmax ijt
γγ =  and for in

ijij γγ < ,  

τij=0.                                                                  (24b) 

The accumulation of the permanent shear strain, 
, is assumed to depend on the total shear strain 

and the damage variable as follows, 

in
ijγ

( ) ( )⎟
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ττ
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6 Smeared formulation 

Strain localization is a major problem in the FE 
model of softening material behaviour, such as that 
induced by the damage. As damage grows in a finite 
element, the material stiffness degrades to zero and 
the deformation tends to infinity. The energy 
dissipation is consequently dependent on the 
discretization size. The simplest, but crudest, way to 
obtain objectivity is modifying the constitutive law 
and making it depend on the mesh size by 
introducing a parameter called “crack band width” 
[13] or “characteristic length”. For the sake of 
simplicity, in the present model the objectivity of the 
solution is obtained using the “crack band model” 
[13] that assume that the fracture energy of the 
material, gf, is distributed (smeared) over the full 
volume of the element. A length characteristic of the 
finite element is then introduced to correlate fracture 
toughness, GM, and energy dissipated per unit 
volume, 

*l
Gg M

M = .                                                            (26) 

Accordingly, the area under the uniaxial stress-
strain curve is adjusted by expressing the maximum 
allowable strain εf  as a function of the fracture 
energy per unit of cracked area, Gf, material 
strength, σ0,  and the characteristic element length, 
l*, 

*0

2
l

G f
f σ

ε = ,                                                           (27) 

when εf  is defined by Eq.27 the energy absorbed per 
unit of cracked area is independent of the mesh 
refinement.  

 
6.1 Critical element size 

From Eq.27 one can deduce that when for a 
very coarse mesh ( ), ε∞→*l f  tends to zero. This is 
inadmissible behaviour, as it would mean that the 
element absorbs more elastic energy at failure onset 
( from zero strain to ε0) than the energy absorbed for 
the fracture process (from ε0 to εf ). Therefore in 
order to prevent this inconsistency a maximum 
characteristic element length has been defined, 

fG
l

2
*

0
0εσ

≤ .                                                            (28) 

7 Computational algorithm material model 

The material behaviour outlined in the previous 
section is implemented using the commercial FE 
code ABAQUS by means of the user defined 
material subroutine UMAT. This subroutine is called 
at all material calculation points of elements for 
which the material definition includes a user defined 
material behaviour.  

The iteration for global equilibrium of a system 
is performed using the Newton–Raphson method. 
The applied scheme is iteration independent, which 
means that all variables are only updated at the end 
of an increment step after convergence is achieved. 
The task to be performed by the user-supplied 
routine is to integrate physical relations at a point 
level (Gauss point of an element) when starting from 
a known equilibrium state and for a total strain 
increment given in each iteration. The output 
information is stress and all other state variables are 
updated (integrated) by the end of the iteration 
increment. At each load increment, a nonlinear 
system of equations must be solved; to do so with 
the Newton-Raphson method and achieve quadratic 
convergence, the consistent tangent matrix must be 
used.  

The tangent stiffness matrix can be expressed 
as, 

ε
σ
∆∂
∆∂

=TC ,                                                           (29)    

where  ∆σ are the stress increments and ∆ε are the 
strain increments.  
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In particular, CT (i, j) represents the change in 
the i-th stress component at the end of the time 
increment caused by an infinitesimal perturbation of 
the j-th component of the strain increment array. 
The constitutive equation defined in Eq.4 can be 
written as, 

 εσσ CMM tottot == ~ ,                                        (4bis) 

where C is the stiffness matrix of the undamaged 
material , and Mtot  can be expressed as, 

Mtot=RMlnt(d2
c) M123(d1

t,c,d2
t,d12, d13, d23),          (30) 

where RMLNT  is the damage tensor accounting for 
matrix fracture in compression, rotated in the 
principal coordinate system and M123 is the damage 
tensor accounting for the other forms of damage. In 
general form the tangent stiffness matrix to compute 
at the end of each step increment is given by,  

ε
εε

σ Cd
d

MCMC i

i

tot
totT ∂

∂
∂
∂

+=
∆∂
∆∂

= .                   (31) 

The resultant tangent stiffness matrix is not 
symmetric. However, in order to improve the 
computational efficiency without affecting the  
accuracy of the solution a symmetric matrix storage 
scheme was used.  
7.1 Convergence of the Newton-Raphson method 

In the literature, several authors use explicit 
dynamic FE codes to deal with strain softening 
behaviour [5,6,14]. Using explicit methods a 
solution is easily achieved, provided that sufficient 
small increment sizes are used. Moreover, for 
explicit FE codes, the failure location is defined by 
both rounding errors in terms of strength within the 
elements and wave reflection effects within the FE 
mesh. These two effects acting simultaneously 
define a band of failed elements which mimic the 
fracture of the real structural component [6].   

In contrast, using an implicit solution 
algorithm the localization has to be introduced 
artificially. There is no wave reflection effect within 
the FE mesh, hence when uniform displacement is 
applied at the ends of a plate with no cuts or holes, a 
constant stress field is generated. The constant stress 
field implies a uniform strain field which does not 
produce localization. A general practice to trigger 
fracture localization is to introduce an imperfection 
in the numerical model. In all the example that 
follow, an element with slightly lower strength 

(typically 10%) was used to trigger the failure 
location. 

 Strain-softening constitutive models may 
cause convergence difficulties when using global 
solution methods. When strong instabilities prevent 
the convergence of the Newton-Raphson method the 
introduction of a small damping force facilitates a 
rapid convergence to a consistent solution. These 
damping forces can be easily introduced in 
ABAQUS\Standard using the ‘Stabilize method’ [7]. 

8 Applications 

This section presents some applications of the 
damage model implemented. Each failure model has 
been tested on simple one element test cases to asses 
the correctness of the numerical implementation, for 
brevity, the results are omitted.  
8.1 Mesh sensitivity 

In order to assess the mesh sensitivity of the 
damage model implemented, a simple tensile test  
has been carried on a cube of volume 1mm3 made of 
carbon-epoxy T300/913. The specimen was 
subjected to uniform displacement along the fibre 
direction. The material properties are reported in 
Table1. The mesh densities tested were 1mm, 0.5 
mm, 0.25 mm and 0.125mm. 

 
E1 
(GPa) 

E2=E3
(GPa) 

G12=G31 
(GPa) 

ν23 ν12=ν13 Gf 
(N/mm) 

Xt 
(MPa) 

132 8.8 4.6 0.4 0.315 91.7 2005 
Table 1. Material properties T300\913 [14] 
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Fig.6.  Mesh sensitivity 
 
The load-displacement responses for all 

meshes are plotted in a single graph, Fig.6. The 
structural responses obtained using different meshes 
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are almost identical which ensures the control of 
energy dissipation regardless of mesh refinement. 
From Fig.6 it is straightforward evaluating the 
energy dissipated during fracture which is defined 
by the area underneath the force-displacement curve. 
8.2 In-plane coupon tests simulation 

The material model was benchmarked against 
experimental uniaxial coupon tests taken from [6]. 
For brevity, only the results of two of the most 
significant tests are reported herein. The tests were 
carried out on woven CFRP specimens. The material 
properties used in FE analyses are reported in Table 
2. Each simulation was carried out using 8 node 
reduced integration solid elements (C3D8R) with 
enhanced hourglass stiffness.  

 
E1 
(GPa)    

E2,3 
(GPa)   

G12,23,31 
(GPa) 

ν12 XT 
(MPa) 

YT 
(MPa) 

YC 
(MPa) 

S12 
(MPa) 

100. 8.11 3.88 0.33 2000 74.1 160. 61 
 

C1 
(Eq.19) 

C2 
(Eq.19) 

C3 
(Eq.19) 

Gt f11 
(N/mm)  

Gcf 22 
(N/mm)  

Gf12 
(N/mm) 

2.0E6 164.6E3 5.06E3 160. 2.25 2.25 
 

Table 2. Material properties and fracture toughness 
 

8.2.1 Modelling matrix compressive failure 
The FE model for uniaxial transverse 

compression had the dimension of 10x10x2.25 mm 
(LxWxT) and [90°]5 layup. Each ply, with a nominal 
thickness of 0.45mm, was modelled using 3 solid 
elements per layer. The fracture angle measured in 
the pure transverse compression test was 45°,  
consequently this value was used in the FE 
simulation. The angle of the band of failed element, 
which can be observed in Fig.7 is also ≈45°. The 
results obtained, agree well with the experiments as 
shown in Fig.8 

 

 
 

Fig.7.  Band of failed elements 
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Fig.8.  Transverse stress –strain response in compression 

 

8.2.2 Modelling shear failure  
The virtual coupon test for in-plane shear 

testing has dimensions 100x20x2.7mm (LxWxT) 
and (+45°/-45°)3 layup. The model had 6 solid 
elements across the thickness to simulate each layer 
individually. Fig.9 shows the formation of the shear 
band pairs that initiate at two location.  
 

 
Fig.9. Shear band at damage initiation 
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Fig.10. Experimental and numerical shear stress-strain 

curve 
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The numerical shear stress vs. shear strain 
curve is compared to the experiment in Fig.10.  

 

9 Conclusions 

A 3D constitutive material model for the 
prediction of  damage onset, growth and ultimate 
failure was developed and implemented in the non-
linear FE code ABAQUS. The full non-linear stress-
strain relation for a lamina in shear is considered.  

The model was validated against experimental 
data for in-plane coupon tests and it is shown to 
reproduce key aspects observable during failure, 
such as the inclined fracture plane in matrix 
compression and the shear band in ±45° tension 
specimen. 

The success of the present methodology is 
promising and points the way for extending its 
application to more complex structural 
configurations. 
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