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1  Introduction 

Many engineering structures contain geometric 
discontinuities such as e.g. cracks, notches, cutouts 
and / or holes. Furthermore, especially when dealing 
with layered structures, material discontinuities such 
as interfaces between dissimilar materials are also 
encountered. Naturally, mixed forms of 
discontinuities often also occur, e.g. cracks in 
interfaces of composite laminates. Fig. 1 shows an 
example for an according structural situation which 
consists of a notched plate under some far field 
loading and which is composed of several dissimilar 
isotropic materials wherein the notch is 
characterized by the opening angle γ. The plate 
includes an arbitrary number of interfaces that share 
one common point of intersection at the tip of the 
notch where a cylindrical coordinate system x1, r, ϕ 
and an orthonormal coordinate system x1, x2, x3 are 
located.  

It is well-known that the near-field state 
variables in the vicinity of the notch tip may be 
dominated by a stress singularity such that the 
stresses grow without bound when r → 0. In such 
cases, a reasonable assumption for the displacements 
uα and stresses σαβ (α, β =1,2) may be found in the 
formulation as an infinite series where the 
displacements are postulated in the form u ~ rλ: 

( ) ( )

( ) ( )

1

1

1

, , ,

, , .

m

m

m

m m
m
m

m m
m

u r K r g

r K r f

λ
α α

λ
αβ αβ

ϕ λ ϕ

σ ϕ λ ϕ

=∞

=
=∞

−

=

=

=

∑

∑
 

 
 

(1) 

Therein, for the description of the angular 
variations of uα and σαβ, the functions gαm and fαβm 
have been introduced. The quantity λm is most often 
denoted as eigenvalue, may be real or complex and 
depends on the near-field geometry and material 
data, while the generalized stress intensity factor Km 
in addition is also governed by the far-field loadings 
and the structural situation in regions far from the 
local notch location. Obviously, when Re(λm) < 1, 
the stresses become singular for r → 0, while 
requirements for finite displacements and finite 
strain energy impose the restriction Re(λm) > 0. 
Consequently, the quantity Re(λm) – 1 is often 
referred to as stress singularity exponent or order of 
the stress singularity. The knowledge of λm is of 
importance since it may serve as an indicator for the 
potential criticality of a given structural situation 
with respect to local failure in the vicinity of a 
geometric and / or a material discontinuity.  

The present investigation is devoted to the 
development and discussion of a novel semi-
analytical method for the analysis of the orders of 
two-dimensional stress singularities Re(λm) - 1, 
Im(λm) as they typically occur in the near field of 
cracks and notches in junctions of an arbitrary 
number of isotropic linear elastic materials under 
plane strain conditions. For analysis purposes, this 
allows us to separate a circular section with the 
radius R from the overall structural situation as 
shown in fig. 1, middle portion. Speaking in terms of 
the cylindrical coordinate system x1, r, ϕ, the method 
is based on a discretization of this circular section 
into an arbitrary number n of sectorial elements (fig. 
1, middle portion) in which a simple linear 
interpolation scheme is employed with respect to ϕ 
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(fig. 1, lower portion) while postulating a set of 
unknown displacement functions in the 
mathematical interfaces between the elements which 
are dependent on the radial coordinate r only. This 
eventually allows for closed-form representations for 
both strains and stresses in each element k.  
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Fig. 1.  Structural situation, discretization scheme, detail 
of a sectorial element. 

 

The governing Euler-Lagrange equations that 
characterize the unknown displacement functions in 
the mathematical interfaces result from the principle 
of minimum elastic potential. Since this leads to 
differential equations of Euler-type, the governing 
equations can be solved in a closed-form analytical 
manner and the displacements result in formulations 
which suggest that u ~ rλ. Therein, the exponent λ 
results from a quadratic eigenvalue problem that is 
encountered during the solution process of the 
governing Euler-Lagrange differential equations. 
This corresponds to the classical series expansion (1) 
so that the results of the present formulation can be 
straightforwardly interpreted as being the desired 
orders of the stress singularities in the vicinity of 
two-dimensional notch situations.  

The near-field analysis of structural situations 
that contain geometric and / or material 
discontinuities has been the topic of a good number 
of scientific investigations during the last decades. 
An encompassing overview is beyond the scope of 
the present contribution so that only some 
representative works in this field are cited [1-7]. For 
selective overviews on this topic, the interested 
reader is referred to [8,9].  
 
2  Displacement approach 

In the sectorial element (k), the following 
approach for the radial and tangential displacement 
components ur and uϕ is employed: 
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Therein, the unknown displacement functions 
Ur and Uϕ are defined in the interfaces (k) and (k+1) 
of element (k), interrelated by the linear Lagrangian 
interpolation polynomials ψ1 and ψ2 (see fig. 1, 
lower portion). From this formulation, the strains 
within each element can be derived in a 
straightforward manner by the linearized strain-
displacement relations (3), given in cylindrical 
coordinates: 
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Hooke’s law (4) eventually leads to the stress 
field in element (k): 
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Therein, the stiffness components C1, C2 and 
C3 for isotropic material behaviour can be written in 
terms of the modulus of elasticity E and the 
Poisson’s ratio ν in the element (k) in a well-known 
manner as: 
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Note that in a state of plane strain, the stress 
components σϕ1 and σ1r have to vanish.  

 
3  Governing equations 

The governing differential equations of the 
present problem which characterize the unknown 
displacement functions Ur and Uϕ in the interfaces 
(k) and (k+1) of element (k) are derived from the 
principle of minimum elastic potential which in a 
contracted vector-matrix notation reads: 
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Therein, all strains and stresses have been compiled 
in the one-dimensional arrays ε and σ, respectively. 
Assuming that the considered plate has a unit 
thickness d = ‘1’ and performing the integrations 
with respect to the circumferential coordinate ϕ, the 
underlying Euler-Lagrange-equations can be shown 
to read: 
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wherein F is the integrand in (6). Evaluating (7) 
eventually leads to the following two coupled 
homogeneous Euler-type second-order differential 
equations, assembled over all interfaces: 
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The matrices K1,…,K10 contain information about 
the geometric and material properties of the 
employed sectorial elements. For reasons of brevity, 
these quantities will not be discussed in more detail 
here. The arrays Ur and Uϕ contain all displacement 
functions Ur and Uϕ for all interfaces in a compiled 
manner. The equation system (8) can be adequately 
reformulated in a condensed form: 
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Therein, the vector U is the total displacement vector 
containing the arrays Ur and Uϕ while the matrices 
H1, H2 and H3 include the original coefficient 
matrices K1,…,K10. 
 
4  Displacement solution 

A solution approach can be sought in the form 
of power law functions as follows: 

.rλ=U A  
 
(10) 

Inserting this solution approach into the governing 
equations (9), the terms rλ cancel out and we 
eventually arrive at the following quadratic 
eigenvalue problem: 
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This eigenvalue problem results in 2(n+1) 
eigenvalues λ and corresponding eigenvectors A so 
that a complete displacement solution U finally 
reads: 
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It is worth noting that the resultant displacement 
solution U is of a functional form that enables a 
direct interpretation of the eigenvalues λm - 1 as 
the classical singularity exponents that 
characterize the stress singularities arising at 
notches and cracks in multimaterial interfaces 
(see eq. (1)).  
 
5  Results and discussion 

The presented analysis approach, even though 
being of a semi-analytical nature, consists of a one-
dimensional discretization with respect to the 
circumferential coordinate ϕ. Hence, before 
discussing specific examples for the asymptotic 
study of the stress fields in the vicinity of 
multimaterial junctions, it is of basic interest to 
study the convergence properties of the derived 
analysis approach. 

Müller et al. [7] presented results for the orders 
λm - 1 of stress singularities at bimaterial notches by 
using a complex potential approach. For the example 
of an interface crack between two isotropic materials 
with the ratio e of the Young’s moduli  
e = E1/E2 = 100 and the Poisson’s ratios given as  
ν1 = ν2 = 0.2, the order of the arising stress 
singularity was determined as the complex-
conjugate value λm - 1 = - 0.5000 ± 0.1227i. 
Depending on the employed discretization scheme, 
the present methodology leads to practically the 
same results as tab. 1 shows: 

Tab. 1:  Results for the order λ - 1 of the stress 
singularity at the tip of an interface crack. 

Number of 
elements 

Order Re(λ - 1) of  
stress singularity 

Order Im(λ - 1) of  
stress singularity 

16 -0.4640 ±0.1240 
32 -0.4906 ±0.1232 
48 -0.4958 ±0.1230 
64 -0.4976 ±0.1229 
80 -0.4985 ±0.1228 
96 -0.4989 ±0.1228 

112 -0.4992 ±0.1228 
128 -0.4994 ±0.1228 

 
Obviously, only very little discretizational effort is 
needed to achieve results which match those of [7] 
very closely. This also becomes obvious when 
discussing the error evolution for Re(λm) – 1 and 
Im(λm) as given in fig. 2. A number of elements 
between 32 to 48 is needed for an accuracy of the 
results ensuring two correct significant digits which 
is a remarkable outcome when compared to standard 

finite element calculations which generally require 
thousands of degrees of freedom for this problem 
class. This demonstrates the excellent performance 
of the present method. With n = 96 elements, no 
variations in the third digit can be found so that this 
degree of discretization (which corresponds to  
n = 24 elements in each quadrant of the circular 
section) is employed for all further computations 
that are presented in this paper.  
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Fig. 2.  Error evolution in the results for the order of the 
stress singularity Re(λm) - 1, Im(λm) at the tip of an 

interface crack between two isotropic materials. 
 
The first example to be considered is a notch with an 
arbitrary opening angle γ which is located in the 
interface between two isotropic and linear elastic 
materials. Material 1 with the modulus of elasticity 
E1 and the Poisson’s ratio ν1 is found in the range  
x3 ≥ 0 while material 2 (characterized by E2 and ν2) 
is located in the range x3 ≤ 0. Fig. 3 depicts the 
resultant orders Re(λm) - 1, Im(λm) of the occurring 
stress singularities for the notch opening angles  
γ = 0°, γ = 30°, γ = 60°, γ = 90°, γ = 120° and  
γ = 150° for a varying Poisson’s ratio ν2. Therein, 
the ratio e = E1/E2 of the Young’s moduli was set to  
e = 100 while the Poisson’s ratio ν1 of material 1 
was kept constant as ν1 = 0.30. As could be expected 
from engineering intuition, lower notch opening 
angles γ lead to stronger stress singularities since for 
a decreasing angle γ the situation of an interface 
crack is approached which, speaking very generally, 
is well-known to be associated with a high fracture 
criticality. For γ = 0°, we have Re(λm) – 1 = 0.5 
which is a natural outcome for a stress singularity in 
the vicinity of a crack tip. A striking feature of the 
results contained in fig. 3 is the fact that for all  
γ > 0°, below some certain value of ν2 the occurring 
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orders of the stress singularities are of a conjugate-
complex nature so that the order of the stress 
singularity consists of a real part Re(λm) – 1 (fig. 3, 
upper portion), and a non-vanishing imaginary part 
Im(λm) (see fig. 3, lower portion). For values of ν2 
above this specific threshold value, a bifurcation of 
the resultant orders of the stress singularities occurs 
and two purely real eigenvalues occur. Such 
bifurcation points which separate complex from 
purely real results are a common phenomenon when 
dealing with the near-field behaviour of stresses in 
the vicinity of multimaterial junctions and 
emphasize the rather complex nature of the presently 
considered problem class. 
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Fig. 3.  Orders Re(λm) - 1, Im(λm) of the stress 

singularities at the vertices of notches with arbitrary 
opening angles γ  between two isotropic materials. 

 
The second example to be considered is a 
rectangular semi-infinite quarter-plane (material 
properties E1 and ν1) located in the range x2 ≥ 0,  
x3 ≥ 0 which is rigidly bonded to a semi-infinite half-
plane (material properties E2 and ν2) located in the 
range x3 ≤ 0. Several values for the ratio e = E1/E2 of 
the Young’s moduli were considered while the 
Poisson’s ratio ν1 was set to ν1 = 0.30. As before, 

results were generated for a varying Poisson’s ratio 
ν2 in the interval 0 ≤ ν2 ≤ 0.49. Fig. 4 depicts the 
resultant orders of the occurring stress singularities 
for e = 1, e = 21/16, e = 7/4, e = 14/5, e = 21/5 and  
e = 100. Fig. 4, upper portion, shows the resultant 
real parts Re(λm) – 1 while fig. 4, lower portion, 
depicts the according imaginary parts Im(λm). For all 
considered ratios e and Poisson’s ratios ν2, two 
purely real relevant eigenvalues occur wherein the 
dominating values are quite close to the classical 
crack-tip exponent Re(λm) – 1 = 0.5 which 
emphasizes the possible fracture criticality of such 
bimaterial junction situations. An exception occurs 
for the ratio e = 100 where for long ranges of ν2, the 
relevant eigenvalue is of a complex-conjugate nature 
which again highlights the quite complicated nature 
of the presently considered problem class. 
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Fig. 4.  Orders Re(λm) - 1, Im(λm) of the stress 

singularities at the tip of a bimaterial junction consisting 
of a semi-infinite quarter-plane (material 1) and a semi-

infinite half-plane (material 2). 
 

The third and last example deals with an interface 
crack in a bimaterial junction consisting of a semi-
infinite quarter-plane (material 1) embedded in a 
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semi-infinite plane (material 2). The structural 
situation is given in fig. 5. The semi-infinite 
quarterplane (material properties E1 and ν1) is 
located in the range x2 ≤ 0, x3 ≥ 0, the semi-infinite 
half-plane (material properties E2 and ν2) occupies 
the region x2 ≥ 0, x3 ≥ 0 as well as x3 ≤ 0. The crack 
is located in the interface which runs parallel to the 
negative x2-axis at x3 = 0. Two exemplary sets of 
material properties were investigated wherein for 
both examples the Poissons’s ratios were set to  
ν1 = ν2 = 0.30. In the first example, the ratio  
e = E1/E2 of the Young’s moduli was assumed as  
e = 1/100 while in the second example, e was set to  
e = 100.  
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Fig. 5.  Bimaterial junction consisting of a semi-infinite 
quarter-plane embedded in a semi-infinite plane with an 

interface crack in one of the interfaces.  
 
Both examples reveal some interesting 
characteristics of the near-field behaviour of the 
state variables at the vertices of cracks and notches 
in multimaterial junctions which defy an ad-hoc 
explanation by simple engineering intuition alone. 
The first example leads to three purely real relevant 
eigenvalues that lead to singular stresses and which 
amount to λ1 -1 = -0.0833, λ2 -1 = -0.2962 and  
λ3 -1 = -0.4552. This is an unexpected result since, 
generally speaking, two-dimensional notch 
situations are usually associated with two relevant 
eigenvalues only. The second example leads to three 
relevant eigenvalues. Firstly, we have a purely real 
eigenvalue λ1 -1 = -0.1240. Secondly, a conjugate-
complex eigenvalue with λ2 -1 = -0.6504 + 0.0367i 
and λ3 -1 = -0.6504 – 0.0367i occurs. Beside the 
occurrence of three relevant eigenvalues, we are 
confronted with the somewhat astonishing fact that 
the real parts of λ2 -1 and λ3 -1 distinctly exceed the 
classical two-dimensional crack tip singularitiy  

λ -1 = -0.5000 which is typical for the singularities 
of the stresse field in the vicinity of cracks in 
homogeneous and isotropic materials and which as 
some kind of common engineering knowledge is 
often understood to be a general upper bound for the 
orders of stress singularities. Hence, speaking quite 
generally, especially the second example is 
associated with a rather high fracture criticality 
which should always be taken into account with care 
when dealing with the analysis of multimaterial 
junctions. 
 
6  Summary and conclusions 

We have presented a novel semi-analytical approach 
to the analysis of the near-field behaviour of 
displacements, strains and stresses in the vicinity of 
cracks and notches in multimaterial junctions 
consisting of an arbitrary number of dissimilar 
isotropic and linear-elastic materials. The method 
employs a discretization of the domain of interest 
into an arbitrary number of sectorial elements in 
each of which a linear interpolation with respect to 
the circumferential coordinate is used while in each 
of the mathematical interfaces between two 
elements, a priori unknown displacement functions 
are defined. These unknown displacement functions 
are determined from the principle of minimum 
elastic potential which leads to a set of governing 
Euler-Lagrange equations that can be solved in a 
closed-form analytical manner. The method works 
with high accuracy, however with a fraction of the 
computational effort that would have to be spent for 
according finite element calculations of comparable 
accuracy. This establishes the presented method as 
being highly reliable on the one hand while being 
very efficient on the other hand.  
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