
16TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS

1

Abstract

In this study the fiberglass/vinylester composite
material was used to replace the rosewood as a new
material for xylophone bars. The optimization
technique combined with the finite element analysis
was used to calculate the natural frequencies of the
first three bending modes of transverse motion for
designing composite xylophone bars. The
optimization techniques used were the subproblem
approximation method and the first order method
respectively. After comparing the computational
efficiency and accuracy of the two optimization
methods, the subproblem approximation method is a
more efficient method, while the first order method
is a more accurate method.

1 Introduction

Composite materials have advantages of high
specific stiffness and high specific strength and are
suitable to replace the traditional materials. The
xylophone is a kind of percussion instruments struck
by a mallet on the bars to vibrate. The rosewood, a
common material used for xylophone bars, becomes
rare recently and the composite material is a good
substitute for xylophone bars. Bork [1] investigated
the effect of the position of undercut on the natural
frequencies of xylophone bars; he provided a
method for tuning three partials in order to improve
the tonal quality of the xylophone. Orduna-
Bustamante [2] addressed the problem of optimal
undercut and found that the frequencies of modes 2
and 3 of transverse motion were harmonically
related with that of the fundamental one (mode 1).
Brancheriau et al. [3] studied the frequency shift
phenomenon in acoustic resonance of xylophone
bars during their tuning operation using the finite
element method and by experiments. Petrolito and
Legge [4] discussed the application of numerical

optimization techniques to xylophone bars. Yeh et al.
[5] studied the vibration analysis of composite
xylophone bars.

In this study the fiberglass/vinylester composite
material was used as a new material for xylophone
bars to replace the rosewood. We compared the
computational efficiency and accuracy between the
subproblem approximation method and the first
order method in order to decrease the time
consumed in designing xylophone bars.

2 Finite Element Optimization Analysis

The natural frequencies of xylophone bars are
often calculated by the modal analysis. The
optimization technique is needed to obtain the
optimal undercut of xylophone bars. In this study the
modal analysis and two kinds of optimization
method were used to design the undercut for
xylophone bars.

2.1 Modal Analysis

In order to discuss the tone of xylophone bars,
the modal analysis [6] was used to calculate the first
three natural frequencies of bending modes for
designing composite xylophone bars. Neglecting the
damping effect and the external force, the governing
equation can be written as

  0 QKQM  (1)

where  M is the global mass matrix, K is the
global stiffness matrix, and Q is the global nodal
displacement vector. In the linear system for free
vibration, the nodal displacement vector of system
can be expressed by the harmonic form as

  tQ ii  cos (2)

where i is the vector of ith mode shape, i is the
ith natural frequency and t is time. Substituting the
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modal vector of the system, Eq. 1 becomes

   02  ii KM  (3)

For nontrivial solutions, the determinant of
  2

i M K  is set to zero.

   02  MK i (4)

From Eq. 4, the eigenvalue i , corresponding to the
ith natural frequency of the system, and the
eigenvector i , corresponding to the ith mode shape,
can be obtained.

2.2 Optimization Methods

The optimization technique combined with the
finite element analysis was used to calculate the
natural frequencies of the first three bending modes
for designing composite xylophone bars. The
optimization techniques used are the subproblem
approximation method and the first order method.
The following paragraph will describe the
optimization problem and optimization methods [6].

2.2.1 The Optimization Problem
The optimization analysis is a method to find

out the best design in the problem. The independent
variables in an optimization analysis are the design
variables. The vector of design variables is denoted
by

 1 2 nX= x , x ..., x (5)

The design variables lie between the upper and
lower limits, expressed by upper and lower bars.

i i ix x x ; i=1,2,...,n  (6)

where n is the number of design variables.
A constrained minimization problem is

established to minimize the objective function, as
shown in Eq. 7, with the side constraints shown from
Eq. 8 to Eq. 11.

Minimize V =v(X) (7)

Subject to

i i ix ; i=1,2,...,nx x  (8)

j j j 1g (X) g +α ; j=1,2,...,m (9)

k k k 2h (X) h β ; k=1,2,...,m  (10)

r r r r r 3w γ w (X) w +γ; r=1,2,...,m   (11)

where V is the objective function, xi are design
variables, gj, hk and wr are the state variables, with
underbar and overbar representing the lower and
upper bounds, m1 m2 and m3 are the number of side
constraints and j, k and r are tolerances of state
variables.

This study used the optimization techniques in
the finite element analysis software ANSYS to
design the optimal undercuts for xylophone bars.
The xylophone bars are assumed homogeneous and
have no defects inside, with all fibers arranging in a
uni-direction. The material properties of fiberglass
reinforced vinylester specimens were obtained from
the tensile test and the results were used in the finite
element analysis.

The procedure of optimization analysis first
defines the objective function and design variables.
Then the inequality constraints, the convergence
criterion and the initial conditions of design
variables were given to start the optimization
technique. In the beginning, the program first used
the modal analysis to obtain the solution from the
initial model and checked whether the solutions are
optimal results or not. If the solutions are not an
optimal design, the program will do the iterations
until the optimal design is found.

The objective function is to find out the
minimum volume of xylophone bar, and inequality
constraints are the frequencies of the first three
bending modes (f1, f2 and f3) and design variables
(H1, H2 and H3). Three design variables are the
heights of the undercut, as shown as Fig. 1, in which
types A and B represent the xylophone bar with one
and two undercuts. In order to make sure the
geometry of xylophone bars is symmetric, we used a
spline curve to fit one half of the undercut, and the
distance between each design point is the same in
the horizontal direction. Table 1 shows the
constraints of frequency bounds of the first three
bending modes [5]. The optimal design is called a
feasible design, when all the frequencies are in the
feasible region. The mathematical model of
composite xylophone bars is shown below

ii

j j j

Minimize Volume

Subject to 0 H H i=1,2,3
f f f j=1,2,3
 
 

(12)

where Hi are design variables, and fj are state
variables, with underbar and overbar representing
the lower and upper bounds.
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(a) Type A

(b) Type B

Fig. 1. Design variables of two types of
xylophone bars

Table 1. Frequency bounds of the first three bending
modes

f1 (Hz) f2 (Hz) f3 (Hz)

Type A 336.2±0.25 1267.1±5 2774.8±10

Type B 397.2±0.25 1199.0±5 2777.6±10

2.2.2 Subproblem Approximation Method
The subproblem approximation method [6] can

be described as an advanced zero order method. This
technique requires an objective function and state
variables, and there is no need to calculate their
derivatives.

The state variables are first replaced with
approximations by means of least squares fitting.
This method uses the penalty functions to convert
from a constrained minimization problem to an
unconstrained problem, and uses the sequential
unconstrained minimization technique (SUMT) to
solve the problem in each iteration. Finally, the
optimal results can be obtained in several iterations.

The iterations in the subproblem approximation
method continue until the convergence is achieved.
The convergence criterion of this method is based on
the tolerance of the objective function and design
variables.

2.2.3 First Order Method
The first order method [6] uses the steepest

decent method and the conjugate gradient method to
find out the optimal search direction and gradient in
design space. Each iteration is composed of sub-

iterations that include the computations for the
searching direction and gradient. One iteration in the
first order method includes several analysis loops.
This method also uses the penalty functions to
combine the objective function and constraints, and
the constrained optimization problem is converted to
an unconstrained optimization problem with sub-
iterations in each iteration.

This method searches the design space in each
iteration, and it contracts the size of the searching
space by the golden-section algorithm and the local
quadratic fitting technique. The iterations in the first
order method continue until the convergence is
achieved. The convergence criterion of this method
is based on the tolerance of the objective function.

3 Experiment

The experiments in this study included the
fabrication, the mechanical properties testing, and
the density measurement of glassfiber/vinylester
composite materials. The experimental results were
used in the finite element optimization analysis to
optimize the undercut of composite xylophone bars.

3.1 Fabrication of Composite Specimens

The composite specimens used in this study
were fabricated by the hot-press method. Fig. 2
shows the procedure about the fabrication of
composite material specimens. The matrix used in
this study is a thermosetting type vinylester, and the
reinforcement is glass fiber. The suggested curing
temperature of the vinylester is 140oC, and the
curing time is 30 min. The specimens were
laminated with four prepreg layers and after hot-
pressing a cutting machine was used to cut the
specimen to the size desired.

Fig. 2. Fabrication of glassfiber/vinylester composite
specimens
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3.2 Mechanical Properties Testing

The glassfiber/vinylester composite specimens
were tested on a tensile test machine to measure the
mechanical properties according to ASTM 3039-76
[7] standard and ASTM D3518-76 [8] standard. The
tensile strength, Young’s modulus, Poisson’s ratio, 
and shear modulus were obtained. The tensile test
system includes a tensile test machine, strain
amplifiers, an AD/DA card and a computer.

In the principle of mechanics of composite
materials [9], the uni-direction fiber reinforced
polymer can be considered as a specially orthotropic
material. There are five independent material
properties E11, E22, G12, ν12 and ν23 needed to be
measured. The [0o]4 fiberglass/vinylester composite
specimens can be used to measure E11 and ν12. The
[90o]4 specimens can be used to measure E22 and the
[±45o]s specimens can be used to measure G12. For
specially orthotropic material [9], E22 is equal to E33,
ν12 is equal toν13, and G12 is equal to G13. G23 can be
calculated from E22/2(1+ν23). Since ν23 is not easy to
measure, it can be assumed equal toν12 according to
the previous reports [10,11]. Yeh et al. [5] showed
that the influence of the variation of ν23 is not
obvious in vibration analysis of composite
xylophone bars. The experimental results of
mechanical properties of fiberglass/vinylester
composites are listed in Table 2.

Table 2. Mechanical properties of
fiberglass/vinylester composites

3.3 Density Measurement of Composite Materials

The density measurement of composite
materials was performed according to ASTM D792-
00 [12] standard test method for density. First, a
scale was used to measure the weight of specimens
in air and in water respectively. The difference
divided by the water density was calculated to find
the volume of specimen. The density was found by
dividing the weight of specimen in air over its
volume. The average density of fiberglass/vinylester

composite specimens was found to be 1963.2
(kg/m3).

4 Results and discussion

After substituting the experimental mechanical
properties in the optimization analysis, the best
design of composite xylophone bars can be found.
The results for two types of xylophone bars by two
kinds of optimization methods are described in the
following paragraphs.

4.1 Type A Xylophone Bar

The optimization results of the subproblem
approximation method for Type A xylophone bar are
shown in Fig. 3(a). The frequencies of the first three
bending modes reached the feasible design after 16
iterations. The feasible design means that the results
satisfy all the constraints within the tolerances. The
optimization results of the first order method for
Type A xylophone bar are shown in Fig. 3(b). f is
the natural frequency normalized by the
corresponding natural frequency.

The frequencies of the first three bending
modes reached the feasible design after 9 iterations.
According to the finite element analysis, the
computational time of the first order method is 5.14
times that of the subproblem approximation method,
because each iteration in the first order method
includes several sub-iterations in calculating the
searching direction and gradient. Therefore the
subproblem approximation method is more efficient
than the first order method.

Table 3 shows the comparison between the
results of the two optimization methods and
objective frequencies for Type A xylophone bar.
The errors from using the subproblem
approximation method are no more than 0.395%,
and the errors from using the first order method are
no more than 0.237%. After comparing the results
obtained from the two optimization methods, it is
concluded that the subproblem approximation
method is more efficient, while the first order
method is a more accurate method for Type A
xylophone bar.

Young’s Modulus 
(GPa)

Shear Modulus
(GPa) Poisson’s Ratio

E11=49.133 ＋1.089
－0.948 G12=6.836 ＋0.621

－0.628 12 =0.256 ＋0.028
－0.014

E22=14.240 ＋2.760
－1.866 G13=6.836 ＋0.621

－0.628 13 =0.256 ＋0.028
－0.014

E33=14.240 ＋2.760
－1.866 G23=5.672 ＋1.166

－0.691 23 =0.256 ＋0.028
－0.014
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(a) Subproblem approximation method

(b) First order method
Fig. 3. The optimization results of Type A

xylophone bars

Table 3. Comparison of results between simulations
and objective frequencies (Type A)

Type A Objective (Hz) SAM* (Hz) FOM** (Hz)

f1 336.2 336.0
(-0.059%)

336.1
(-0.030%)

f2 1267.1 1262.1
(-0.395%)

1264.1
(-0.237%)

f3 2774.8 2764.8
(-0.360%)

2780.0
(0.187%)

* Subproblem Approximation Method
** First Order Method

4.2 Type B Xylophone Bar

The optimization results of the subproblem
approximation method for Type B xylophone bar are
shown in Fig. 4(a). The frequencies of first three
bending modes reached the feasible design after 10
iterations. The optimization results of the first order
method for Type B xylophone bar are shown in Fig.

4(b). f is the natural frequency normalized by the
corresponding objective frequency. The frequencies
of first three bending modes reached feasible design
after 8 iterations. Since Each iteration in the first
order method includes several sub-iterations in
calculating the searching direction and gradient, the
computational time by the first order method is 6.42
times that of the subproblem approximation method
in the finite element analysis. Therefore the
subproblem approximation method is more efficient.

Table 4 shows the comparison between the
results of the two optimization methods and
objective frequencies for Type B xylophone bar. The
errors from using the subproblem approximation
method are no more than 0.338%, and the error of
results by using the first order method are no more
than 0.162%. After comparing the results of the two
optimization methods, it is also concluded that the
subproblem approximation method is more efficient,
while the first order method is a more accurate
method.

(a) Subproblem approximation method

(b) First order method
Fig. 4. The optimization results of Type B

xylophone bars
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Table 4. Comparison of results between simulations
and objective frequencies (Type B)

Type B Objective (Hz) SAM* (Hz) FOM** (Hz)

f1 397.2 397.0
(-0.050%)

397.3
(0.025%)

f2 1199.0 1196.5
(-0.209%)

1199.0
(0%)

f3 2777.6 2768.2
(-0.338%)

2773.1
(-0.162%)

* Subproblem Approximation Method
** First Order Method

4.3 Comparison of Results Between Two
Optimization Methods

Fig. 5 shows the comparisons between two
optimization methods in Type A and Type B
xylophone bars. The results of the first order method
vary very little from a few iterations. The results of
the subproblem approximation method converge
after 6 iterations. Although the first order method
reach the feasible design in less iterations than those
of the subproblem approximation method, the
computational time of the first order method is 5.14
and 6.42 times that of the subproblem approximation
method in the finite element analysis as described in
the previous sections. The subproblem
approximation method is more efficient than the first
order method.

Fig. 6 shows the optimal shapes of Type A and
Type B xylophone bars by the subproblem
approximation method. Type A xylophone bar has a
undercut of single curve and Type B xylophone bar
has a undercut of double curves. The optimal shapes
of Type A and Type B xylophone bars obtained
from the first order method are very similar to those
obtained by the subproblem approximation method.

Fig. 7 and Fig. 8 show the first three bending
modes of Type A and Type B xylophone bars. The
blue color in the figure indicates the smallest
displacement in the mode shape. Fig. 9 shows that
there are two nodes in the fundamental mode located
symmetrically at 0.205L from the end. The nodes
can be used in design to make holes to connect the
xylophone bar with xylophone frame by strings.

(a) Type A

(b) Type B

Fig. 5. Comparisons of results between two kinds of
optimization method

(a) Type A

(b) Type B

Fig. 6. The optimal shapes of xylophone bars by
Subproblem approximation method
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(a) FEA Model (b) 1st Bending Mode

(c) 2nd Bending Mode (d) 3rd Bending Mode

Fig. 7. The mode shapes of Type A xylophone bar

(a) FEA Model (b) 1st Bending Mode

(c) 2nd Bending Mode (d) 3rd Bending Mode

Fig. 8. The mode shapes of Type B xylophone bar

Fig. 9. Two nodes appear in the 1st bending mode of
xylophone bar

5 Conclusions

According to the finite element analysis and
experimental results, the following conclusions can
be made for designing two types of xylophone bars.

(1). The fiberglass/vinylester composite materials
can replace the rosewood as a new material for
xylophone bars.

(2). In finite element optimization analysis, the
iteration number and error of the first order
method is less than those of the subproblem
approximation method for both Type A or Type
B xylophone bars. The first order method is
more accurate than the subproblem
approximation method in optimization analysis
for both Type A and Type B xylophone bars.

(3). The computational time of the first order method
is more than that of the subprobelm
approximation method. The subproblem
approximation method is more efficient than
the first order method in the optimization
analysis for both Type A and Type B
xylophone bars.

(4). The finite element method combined with both
optimization methods, the subproblem
approximation method and the first order
method, can be used to efficiently design the
composite xylophone bars.

(5). The mode shapes of xylophone bar can help the
designer to locate the position of holes at which
the string can be used to connect xylophone
bars with the frame.
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