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Abstract  

Fiber-reinforced composites are usually 
designed using constant fiber orientation in each 
ply. In certain cases, however, a varying fiber angle 
might be favorable for structural performance. This 
possibility can be fully utilized using tow placement 
technology. Because of the fiber angle variation, 
tow-placed courses may overlap and ply thickness 
will build up on the surface. This thickness build up 
affects manufacturing time, structural response, and 
surface quality of the finished product. 

  
This paper will present a method for designing 

composite plates and shells using varying fiber 
angles. The thickness build-up is predicted as 
function of ply angle variation using a smeared 
approach. It is found that the thickness build-up is 
not unique and depends on the chosen start 
locations of fiber courses. Optimal fiber courses are 
formulated in terms of minimizing the maximum ply 
thickness, maximizing surface smoothness or 
combining these objectives, with and without 
periodic boundary conditions. 

 
 

1 Introduction  

In industry, fiber-reinforced composites are 
usually designed using a constant fiber 
orientation in each ply. The fiber angles in these 
laminates are typically 0, 90, and ±45 degrees.  
Traditionally the choice of these lay-ups was 
motivated by manufacturability, while 
nowadays lay-ups with changing or even non-
conventional fiber angles are avoided because 
of the lack of allowables.  However, research on 
composites with a varying in-plane fiber 
orientation has shown that variable stiffness can 
be beneficial for structural performance [1-11], 
because variable-stiffness laminates are able to 

redistribute the loading, as opposed to constant-
stiffness laminates.  In most cases curvilinear 
fiber paths manufactured by tow placement are 
used to construct the variable-stiffness laminates 
[4,5,8-10,12].  Jegley, Tatting and Gürdal [8-10] 
designed variable-stiffness flat plates with holes 
and demonstrated their effectiveness by building 
and testing several specimens. 

Due to fiber angle variation, a tow-placed 
shell typically exhibits gaps and/or overlaps 
between adjacent courses and ply thickness will 
change along the surface [8-10,12].  The amount 
of gap/overlap affects structural response, 
manufacturing time, and surface quality of the 
finished product. 

This paper presents a method for designing 
composite plates and shells using varying fiber 
angles.  The thickness build-up is predicted as 
function of ply angle variation using a 
streamline analogy.  It is found that the 
thickness build-up is not unique and depends on 
the chosen start locations of fiber courses.  
Optimal distributions of fiber courses are 
formulated in terms of minimizing the 
maximum ply thickness or maximizing surface 
smoothness, either with or without periodic 
boundary conditions.  Subsequently the discrete 
thickness build-up resulting from the tow 
placement process will be shown as comparison 
to the smeared thickness approximation. 

Finally, a number of applications for the 
developed methods and suggestions for future 
research will be given. 

 
2 Streamline Analogy  

For the construction of discrete fiber paths, 
a streamline analogy is being used.  In this case 
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each streamline represents the centerline of a 
course, or if the course width is made infinitely 
small, each streamline will represent a single 
fiber.  Mathematically a streamline is 
represented by a stream function 

 
Cyx =Ψ ),(     (1) 

 
which connects all the points with a 

constant value C.  For a given fiber angle 
variation θ(x,y), the streamlines can be found by 
solving the following partial differential 
equation: 
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A unique solution for the stream function 

(and thus the location of the stream lines) 
depends on the boundary conditions.  Before 
seeking a solution to the stream function, 
additional considerations relevant to the 
physical representation of the fiber paths are in 
order.  

 
As stated earlier, the streamlines represent 

the central path of a finite width course.  Unless 
the streamlines are parallel, the successive 
courses will always overlap each other when no 
gaps are allowed between them (or alternatively, 
the gaps will form between the passes if two 
successive finite width passes are not allowed to 
overlap).  The amount of overlap depends on the 
distance between the course centerlines: when 
the distance is decreased the overlap area is 
increased.  Although in reality these overlaps 

are discrete, a first approximation to the amount 
of overlap could be made by smearing out this 
discrete overlap to form a continuous thickness 
distribution. In this case, the smeared thickness, 
t, will be inversely proportional to the distance 
between adjacent courses, which can be 
explained as follows.  If a number of N courses 
with a given width, wc, and thickness has a fixed 
volume V, and if these successive courses are 
placed closer than the width of the courses, then 
the total width covered is less then N·wc, and the 
thickness has to be increased in order to 
maintain the same material volume V. 

When the distance between two 
streamlines is |dn|, then t ∝ 1/|dn| (as explained 
above).  Since Ψ,n = dΨ/dn and dΨ between two 
streamlines is constant according to Eq. 1. the 
thickness t will be proportional to Ψ,n as 
follows: 
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If dΨ is assumed to be 1, then t = Ψ,n., 

which can be used to derive a direct correlation 
between the thickness distribution and the fiber 
angle variation: 

 
( ) θ∇=∇− nts ln     (4) 

 
in which s  and n  represent the tangent and 
normal vectors to a streamline, respectively, as 
shown in Fig. 1.  The physical explanation of 
Eq. 4 is that the change in thickness along a 
streamline depends on the change of the fiber 
orientation perpendicular to that streamline.  
Since both vectors s  and n  depend on the 
given fiber angle distribution θ(x,y), the only 
unknown in Eq. 4 is the thickness.  The 
thickness can now be determined by solving this 
equation, but since it is a differential equation 
boundary conditions are needed in order to 
obtain a unique solution.  In accordance with 
streamline theory, boundary conditions are only 
needed at the inflow boundary, where the inflow 
boundary is defined by: 

 

Fig. 1.  Definitions 
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0≤⋅Ns      (5) 
 

where s  is the vector tangent to the streamline 
and N  is the outward normal vector to the 
boundary, as shown in Fig. 1.  By changing the 
thickness at the inflow boundary, the thickness 
distribution inside the domain and at the outflow 
boundaries will change. 

 
3. Determining Boundary Conditions 

There exist an infinite number of possible 
boundary conditions for which the thickness 
distribution associated with the streamlines can 
be found, but the most difficult part is to find 
the ones that are physically sensible for the 
problem in hand.  In this paper the boundary 
conditions are established such that they fulfill a 
certain optimality criterion.  The optimality 
criteria demonstrated in this paper are minimum 
maximum thickness, maximum smoothness, and 
combinations of these two.  In addition to the 
optimality criterion, constraints such as a 
minimum of one or periodic boundary 
conditions can be enforced as well. 

 
3.1 General Solution 

By using the following change of 
variables: τ = ln t, Eq. 4 becomes: 

 
θτ ∇=∇− ns     (6) 

 
Above equation is solved numerically by 

discretizing the derivatives, so that it is written 
as: 

 
[ ] BM =τ     (7) 
 

where [M] is the matrix that represents the left 
hand side of Eq. 6, τ  is the vector that 
represents τ at every grid point and B  is the 
vector that represents the right hand side of    
Eq. 6, as well as the boundary conditions.  If the 
thickness at the inflow boundaries is assumed to 
be one everywhere (τ = 0), a nominal solution 
can be found for τ , which will be referred to as 

0τ .  A general solution of Eq. 7 can be 
expressed as: 

 
[ ] inT τττ += 0     (8) 

 
where each column j in matrix [T] represents the 
influence of boundary grid point j on the 
thickness distribution in the complete domain, 
while satisfying Eq. 7.  Since these columns are 
independent of each other and since Eq. 7 is a 
linear equation, any linear combination of these 
columns also represents a solution, as given by 
Eq. 8.  The entries in inτ  all render the thickness 
at a single point on the inflow boundary.  By 
substituting Eq. 8 in Eq. 7, the thickness can be 
optimized for one of the criteria mentioned 
earlier by using inτ  as design variables. 

Often it is desired to have at least one layer 
of material everywhere so that no gaps exist.  
Therefore it is required that the thickness over 
the entire domain is at least one ( )0≥τ  in all 
optimizations described below. 

 
3.2 Minimized Maximum Thickness 

Minimizing the maximum thickness of the 
plate is the first optimality criterion that will be 
elaborated on in this paper.  This criterion is 
relevant for judging how practical the resulting 
thickness distribution would be in a real life 
structure, as well as for determining if it is 
possible to manufacture a plate with constant 
thickness for the given fiber angle variation.  If 
the thickness build-up is too severe (i.e. if one 
point is 100 or 1000 times thicker than another 
point) it will not be applicable to realistic 
structures. 

In order to solve the min-max problem, the 
bound formulation as introduced by Olhoff [13] 
is used.  This formulation introduces a new 
variable α, which represents the maximum 
thickness and which also serves as the new 
objective function for the minimization.  
Additionally, a constraint on the thickness at 
each grid point is being introduced, so that the 
thickness never exceeds the minimized 
maximum thickness, α: 
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where Ng is the number of grid points.  The 
design variables that result from the 
optimization are substituted in Eq. 8 and then 
the thickness distribution is found by changing 
variables again: ieti

τ= . 
 

3.3 Maximized Smoothness 

Another possible optimization objective is 
to maximize the smoothness of the thickness 
distribution of the composite panel.  Although 
in reality the change in thickness will always be 
discrete due to the discrete nature of tow 
courses, it would still be desirable for ply 
drops/overlaps to be distributed throughout the 
panel rather than to be concentrated at particular 
regions. In order to achieve this, smoothness is 
defined as the norm of the rate of change of 
thickness.   

Smoothness is maximized by minimizing 
the H1-norm of the thickness: 

 
[ ]ττ KT

2
1min              (10) 

 
where [K] is the matrix that discretizes the 

Laplacian. Substituting the expression for τ  
(Eq. 8) in Eq. 10 gives: 
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The first term in this equation is constant, 

so that the objective function to be minimized 
is: 

 
[ ] inrinr

T
in fKF τττ −= 2

1
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with 

 
[ ] [ ] [ ][ ]

[ ][ ]TKf
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T
r

T
r
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=              (13) 

 

The minimum of Eq. 12 can be found by 
differentiating it and equating it to zero, so that: 

 
[ ] rinr fK =τ               (14) 
 
This is a linear system that can be solved 

for inτ .  However, the [Kr]-matrix is one time 
singular and therefore one entry of inτ  is given 
an assumed value so that the system can be 
solved.  After the solution is substituted in     
Eq. 8, a constant can be added to τ  such that 
the condition of 0≥τ  is being met (this will not 
change the H1-norm, but will change the 
absolute value of thickness). 

 
3.4 Combined Objective Function 

Since both minimizing the maximum 
thickness and maximizing the smoothness are 
valid optimization criteria, designers might 
consider combining the two in order to obtain a 
better design.  Depending on the designer, 
different weights can be assigned to the 
individual criteria.  The objective functions of 
Eq. 9 and Eq. 12 can then be combined to form 
a new objective function: 
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                (15) 
In this equation w is the weighing function 

that indicates the importance of the smoothness 
in the optimization.  Furthermore the two 
objective functions are normalized by α* and 

[ ] ∗∗∗
− inrinr

T
in fK τττ2

1 , respectively, where α*
  

is the minimum maximum thickness obtained 
from Eq. 9 and ∗

inτ  are the design variables for 
maximum smoothness as obtained by Eq. 12.   

 
3.5 Periodic Boundary conditions 

The present formulation would also be 
valid for cylindrical shells since points on a 
cylindrical surface are in one to one 
correspondence to points on a rectangular panel. 
Nevertheless, an important difference exists; in 
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the case of a cylindrical shell the solution must 
be periodic.  When the ply angle variation is 
periodic, continuity in thickness is obtained by 
including the thickness periodicity constraints in 
the earlier described optimization routines.  For 
periodicity in y-direction, this takes the form: 

 
( ) ( ) lxbxx iii ≤≤= 0,0, ττ             (16) 

 
where l is the length and b is the width of the 
panel. 

 
4. Discrete Fiber Courses 

Once the smeared thickness distribution is 
obtained through one of the optimizations 
described above, the corresponding stream 
function can be obtained by integrating Ψ,n over 
dn: 

 

∫∫
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The derivatives of Ψ with respect to x and y 
can be expressed as functions of Ψ,s and Ψ,n as 
follows: 
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Since Ψ,s = 0 and Ψ,n = t, the combination 

of Eqs. 18 and 19 will give: 
 

∫
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Both t(x,y) and θ(x,y) are known functions, 

so that Ψ(x,y) can be solved.  By plotting the 
contour lines of this function at fixed values dΨ 
from each other, the streamlines are found that 
could represent the centerlines of the actual 
fiber courses.  The constant of integration will 

determine the exact location of the fiber 
courses, which can be used for staggering in 
case of multiple plies with the same fiber angle 
distribution.  Once the course centerlines are 
known, discrete courses can be placed on top of 
them and the discrete thickness distributions can 
be found.   

 
5. Results 

To illustrate the differences between the 
various optimality criteria described in section 
3, an example panel is analyzed which has the 
following linear angle variation in x-direction: 

 

( )
l
xyx 3030, −−=θ

  (20) 
 

such that the fiber orientation is at -30 degrees 
at the left side of the panel (x = 0) and -60 
degrees at the right side of the panel (x = l ).  
The length to width ratio of the panels is 3. 

Fig. 2a. shows the thickness distribution of 
a panel for which the maximum thickness is 
minimized.  The thickness along the left and top 
edge is one, which means that there are no 
overlaps on these sides.  The maximum 
thickness occurs in the lower right corner of the 
panel.  The thickness distribution of a panel 
with maximized smoothness is presented in Fig. 
2b.  Compared to the first panel the maximum 
thickness is increased by approximately 20 
percent, while smoothness is improved by 40 
percent.  In Fig. 2c. the smeared thickness for 
the combined objective with w = 0.5 is plotted.  
Since both maximum thickness and smoothness 
are included in the objective function, the 
increase in maximum thickness is only  7 
percent, while the improvement in smoothness 
is 30 percent when compared to the first panel.  
Finally a panel with periodic boundary 
conditions is shown in Fig. 2d.  The maximum 
thickness of this panel is more than 40 percent 
larger than the minimum maximum thickness, 
and also smoothness is decreased. 

The discrete thickness distributions 
corresponding to the four smeared thickness 
distributions of Fig. 2. are shown in Fig. 3.  The 
width of these courses was assumed to be 1/6 of 
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the panel width.  Fig. 3a. clearly shows the least 
amount of overlap.  If a laminate with constant 
thickness was desired, the fiber paths obtained 
by this optimization can be used as basic paths 
and the overlaps could be eliminated by cutting 
individual tows on the sides of the courses.  The 
smoothness of the laminate in Fig. 3b. is not 
very apparent, until multiple plies are stacked 
on top of each other and staggered with respect 
to each other.  The combined objective laminate 
of Fig. 3c. is indeed in between the laminates of 
Fig. 3a. and Fig. 3b.  Finally, the relatively large 

thickness build-up of the laminate with periodic 
boundary conditions is translated in large 
overlap areas, as shown in Fig. 3d. 

6. Future Research 
In this paper it was successfully 

demonstrated that a stream line analogy can be 
used to predict and influence the thickness 
distribution in a laminate with variable fiber 
angles.  Different objectives for optimization 

Fig. 3. Discrete thickness build-up (black = 1 layer, white = 2 layers) 

Fig. 2. Thickness distribution for various optimization criteria 
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were considered, and in the future others, such 
as minimum volume, might be explored as well.   

In addition to one-ply designs, the 
developed methods could be used to design 
complete laminates with both varying fiber 
angles and varying thickness.  One approach 
would be to design the laminate using 
lamination parameters and thickness [6,7,14] as 
spatially varying design variables, and then as a 
post-processing step, multiple plies with varying 
fiber angles and their corresponding thickness 
distributions could be fit in order to match both 
the desired lamination parameters and thickness 
distribution as close as possible. 

Finally, a similar method will be developed 
for curved surfaces in order to expand the 
applicability of the method. 
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Appendix A 

The derivatives of the stream function are: 
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The second derivatives of the stream 

function are: 
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Continuity of the second derivatives of the 

stream function implies that Ψ,xy = Ψ,yx so that: 
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Using the following definitions: 
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Eq. A can be written as: 
 

( ) θ∇=∇− nts ln  
 


