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Abstract  

This study proposes a combined approach of the 
analysis for laminated shallow shells with non-
uniform curvature and the layerwise optimization 
(LO) method to achieve the optimum free vibration 
behaviors. Shell structures with non-uniform 
curvature are recently found in automobile and 
other design-oriented structural applications. In the 
analysis part, an interpolating function is introduced 
in polynomial form and the corresponding curvature 
is derived as a function of the position. The obtained 
curvature is substituted into the total potential 
energy of the shell and the analytical procedure is 
shown to derive a frequency equation by the Ritz 
method. After examining the solution accuracy, the 
optimization process is applied in numerical 
examples to accomplish the maximum fundamental 
frequencies of the shallow shells.   
 
 
1 Introduction 

Significant progress has been made over the last 
two decades in the development of increasingly 
more efficient composite structures, and many 
industries continue to investigate strategies for fully 
exploiting the potential of composites for a variety 
of structural forms including the laminated shallow 
shells.  In addition to their potential for high specific 
stiffness and strength, a key advantage of composite 
laminates is the ability to tailor the properties of the 
laminate through lay-up design.  It is therefore 
appropriate clearly that efforts be applied to fully 
optimize this tailoring process. 

The vibration analysis of shallow shells has a 
long history of academic and practical interest, as 
summarized in a monograph [1] by Leissa and in 
two review papers by Qatu [2] and Liew, Lim and 
Kitipornchai [3].  A basic theory was fully 

developed in reference [4], where a complete set of 
equations for elastic deformation of laminated 
composite shallow shells are presented for static and 
vibration behaviors.  Since the publication of this 
reference, a number of relevant technical papers 
have appeared on vibration of laminated composite 
shallow shells. 
       As for tailoring, Raouf [5] considered the effect 
of tailoring on the dynamic characteristics of 
composite panels using fiber orientation.  Narita, Ito 
and Zhao [6] applied a genetic algorithm to 
determine the maximum fundamental frequency of 
laminated shallow shells that are supported by shear 
diaphragms and for the same problem they used 
Kuhn-Tucker condition to derive the maximum 
fundamental frequency of laminated shallow shells 
[7].  The effect of using various solutions upon 
optimizing vibration characteristics of laminated 
shallow shells are also studied [8].  These papers [5-
8] are however limited to a simple case with the 
edges fully supported by shear diaphragms, where a 
simplified frequency formula is derivable by 
neglecting the cross-elasticity terms.  

The present paper proposes a new strategy for 
optimizing the vibration characteristics of the 
laminated composite shallow shells with non-
uniform curvature subjected to any sets of typical 
boundary conditions.  First, a semi-analytical 
method is introduced by extending a method used 
for uniform laminated shallow shell [9] to deal with 
the problem. For surface modeling, an interpolating 
function with unknown coefficients is introduced to 
represent the required surface shape and is 
determined by matching at some representative 
points on the surface. The variable curvature 
determined from the surface is substituted into the 
total potential energy of the shell. A frequency 
equation is derived by the Ritz method to yield the 
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frequency parameter which is used as an objective 
function in the present optimization.  

Secondly, the analytical method is combined 
with the layerwise optimization (LO) scheme, 
recently developed for laminated shallow shells with 
constant cylindrical curvature [10].  Numerical 
examples demonstrate the accuracy of the present 
Ritz solution to determine natural frequencies of 
cylindrically curved panels with various edge 
conditions, and also the extension of the LO 
approach to the shallow shells with non-uniform 
curvature is shown to be quite effective in obtaining 
the optimum fiber orientation angles which 
maximize the fundamental frequencies of the 
laminated shallow shells. 

 

2 Analysis and Optimization Procedure 

2.1 Vibration Analysis 
Consider a shallow shell with rectangular 

planform of a×b, and the rise of the shell is 
expressed by a polynomial in terms of x and y 

2
0 10 01 20 11( , ) ...x y c c x c y c x c xyφ = + + + + +  (1) 

where c0,c10,… are unknown coefficients, and are 
determined by interpolating the surface on some 
representative points.  For purpose of illustrating the 
procedure, the curved surface modeled for 
automobile bonnet and roof shapes is introduced in 
Fig.1 that satisfies  
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Substitution of Eq.1 into Eq.2 yields an expression 
for the non-uniformly curved surface  
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and the curvatures (curvature radiuses) are obtained 
by differentiating twice as 

2 2
1 4 2 1 1 81 , 0,⎛ ⎞⎛ ⎞= + = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠x y xy

H y Hx
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 (4) 

under the assumption  (∂φ/∂x)2= (∂φ/∂y)2=0. 
Equations (4) indicate that the curvature changes in 
linear fashion and unknown coefficients c0, c10 and 
c01 in Eq.1 are not included in the curvatures. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 1. Example of Laminated composite shallow 
 shells with non-uniform curvature 

 
In the Donnell type thin shell theory [4], 

displacements u*(x,y,z), v*(x,y,z) and w*(x,y,z) at an 
arbitrary point within the shell are given in terms of 
the displacements u(x,y), v(x,y) and w(x,y) on the 
middle plane by 

* , * , *w wu u z v v z w w
x y

∂ ∂
= − = − =

∂ ∂
 (5) 

where z is a coordinate measured from the middle 
plane.  The strains are then given by 

* *

*

, ,x x x y y y

xy xy xy

z z

z

ε ε κ ε ε κ

γ γ κ

= + = +

= +

 (6) 

where κx and κy are the normal curvatures defined at 
the middle plane of the shell, and κxy is a twisting 
curvature as 

2 2 2

y2 2, , 2x y x
w w w

x yx y
κ κ κ∂ ∂ ∂

= − = − = −
∂ ∂∂ ∂

(7) 

The relations between the displacements (u, v and w) 
and the strains (εx, εy and γxy) are given in the shallow 
shell theory by 

y
2, ,x y x

x y x y

u w v w u v w
x R y R y x R
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= + = + = + +
∂ ∂ ∂ ∂

 

(8) 

The difference between the present and conventional 
shell analyses is easily recognized, since the 
curvatures in Eqs.(8) are not constant but functions 
of the coordinate (x,y). 

In using the Ritz method, one has to evaluate 
the total potential energy and the strain energy for 
the shallow shell is 

s bs bV V V V= + +  (9) 
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where Vs is the energy caused by the in-plane motion, 
Vbs is the energy by coupling between in-plane and 
out-of-plane motions and Vb is the energy by out-of-
plane motions: 
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(10)

where {ε} and {κ} are the strain and curvature 
vectors, and for the laminated composite material, 
[A], [B] and [D] become the stiffness matrices of the 
composites for in-plane motion, coupling motion of 
in-plane and out-of-plane motion, and out-of-plane 
motion, respectively. The kinetic energy for the shell 
is defined by  
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(11)

where ρ is defined as the averaged mass per unit 
volume of the shell. Next, the displacement 
functions are assumed by the double series form as  

1 1

0 0

1 1

0 0
1 1

0 0

( , , ) ( ) ( )sin ,

( , , ) ( ) ( )sin

( , , ) ( ) ( )sin

M N

ij i j
i j

M N

kl k l
k l
M N

mn m n
m n

u t P X Y t

v t Q X Y t

w t R X Y t

ξ η ξ η ω

ξ η ξ η ω

ξ η ξ η ω

− −

= =

− −

= =
− −

= =

=

=

=

∑∑

∑∑

∑∑

 

(12)

where ξ=2x/a and η=2y/b are non-dimensional 
coordinates, and Pij, Qkl and Rmn are unknown 
coefficients.  Functions Xi(ξ), Yj(η),…, and Yn(η) 
are  
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(13)

that satisfy the geometrical boundary conditions 
along the shell edges.  In Eqs.(13), the BCpq are the 
boundary indexes where p denotes the shell edge 
(p=1～4: the left-hand-side edge, the lower edge, 
the right-hand-side edge and the upper edge, 
respectively, in Fig.1) and q denotes each of the 
displacements ( q=1～3: u,v,w). More specifically, 
BCpq=0 and BCpq=1 indicate that the in-plane 
displacements u, v (q=1,2) are free and fix, 
respectively.  For the out-of-displacement w (q=3), 
BCpq=0, BCpq=1 and BCpq=2 indicate that the 
out-of-displacement w (q=3) is free, simply 
supported and clamped, respectively.  The use of the 
indices BCpq makes it possible to satisfy the 
kinematical boundary conditions [10]. 

After the equations are rewritten by using the non-
dimensional quantities, the displacements (12) are 
substituted into the functional in term of the strain 
and kinetic energies  

max maxL T V= −  (14)

Then an eigenvalue equation is derived by the 
minimizing process  

0
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= = =
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 (15)

where the subscripts are i (k,m)=0,1,2,..., M-1， j 
(l,n)=0,1,2,...,N-1．In a matrix form,  
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where Ω is a frequency parameter defined by  
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and k11,.., k33 and m11,.., m33 are the elements of the 
stiffness and mass matrices (not presented due to the 
limited space), where the integrals included in the 
elements can be integrated exactly. 
 
2.2 Layerwise Optimization 

An optimum structural design is generally 
composed of two parts: the structural analysis and 
the optimization scheme.  The first part has been 
developed in Sec.2.1 and the second part is 
formulated here. The object function for 
optimization is taken to be a frequency parameter Ω 
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defined in Eq.(17) and is denoted by Ω1 for the 
fundamental mode.  The term "fundamental 
frequency" indicates the lowest eigenvalue for given 
conditions.     

The design variables are taken to be a set of 
fiber orientation angles in the K layers of the upper 
(or lower) half of the plate cross-section: 

[θ1/θ2/…/θk/,…/θK]S   (18)

where θk
  is the fiber orientation angle in the k th 

layer (k=1:outermost, k=K: innermost) and the 
subscript “s” denotes symmetric lamination.  
Therefore, the optimization problem may be written 
in standard form as 
       Find : θ = [θ1/θ2/…/θK]S,opt  

which maximizes : Ω1  
subject to the constraints: 

 －90° ≤ θk ≤ 90°(k=1,2,…,K) 

(19)

It is known that the approach of using each 
fiber orientation angle directly as a design variable is 
straightforward but the number of design variables 
increases in proportion to the number of layers, 
resulting in a multi-dimensional search optimization 
problem. The layerwise optimization (LO) approach 
makes use of a simple physical observation that in 
the bending of shallow shells, the outer layer has a 
greater stiffening effect than an inner layer and 
therefore has a greater influence.  This physical fact 
suggests that the outer layer plays a more influential 
role in determining the natural frequency of 
laminated shallow shells.  It is intended here to 
extend the LO approach, already successfully used 
for plate optimization, to the shallow shell problems 
with slight non-uniform curvature.   

Therefore, the following approach to the solution 
of the optimization problem is advocated. 

 
The optimum stacking sequence [θ1/θ2/…/θK]S,opt 

for the maximum fundamental frequency of a 
laminated shallow shell can be obtained by 
determining the optimum fiber angle for each layer 
sequentially working from the outermost to the 
innermost layer. 

 
The difference between the flat plate problems 

and the present shallow shell problem is that the in-
plane motion is coupled with the out-of-plane 
motion.  Due to this difference the applicability of 
the LO procedure to the present problem is 
questionable, but it will be demonstrated that the LO 
procedure works quite effectively for shallow shells 

because the bending is still dominant in the vibration 
of these shallow shells. 

If Ω1
(k)

opt is assumed to be the maximum value 
of the frequency parameter obtained in the k th step 
(Note that the same k indicating the layer number is 
used because it deals with the k th layer),  the 
following procedure, based on the foregoing 
assumption, may be used to determine Ω1,opt : 

 
Step 0:  Assume a laminated shell made of K 

hypothetical layers in the upper (lower) half of the 
cross-section with mass but no rigidity.  

 
Step 1:  Find θ1,opt, using a one-dimensional search 

with a certain increment Δθ, which maximizes the 
fundamental frequency Ω1

(1)
opt  of the laminated 

shallow shell with an anisotropic lamina (i.e., with 
EL, ET, GLT and νLT) in the first outermost layer.  The 
(K-1) inner layers remain hypothetical with no 
rigidity. 

 
Step 2:  Find θ2,opt, using a one-dimensional search, 

which maximizes Ω1
(2)

opt of the laminated shell with 
an anisotropic lamina in the second layer and an 
anisotropic first layer with θ1=θ1,opt.  The inner (K-2) 
layers remain hypothetical with no rigidity. 

 
Step 3 to K-1:  The foregoing process is repeated 

to yield θ3,opt,…θ(K-1),opt. 
 
Step K:  Find θK,opt  which maximizes the ΩK,opt 

of the laminated panel with an anisotropic lamina in 
the K-th innermost layer.  This last step determines 
the optimum lay-up [θ1/θ2/…/θK]S,opt which 
maximizes the fundamental frequency Ω1,opt=Ω1

(K)
opt 

of the panel.  
 

The above set of Steps from 1 to K is considered 
as one cycle of the LO iterative solution procedure.  
In the first cycle, the inner layers are assumed to 
have zero stiffness, and the fiber orientation angles 
determined at Step K in the first cycle, i.e. 
[θ1/θ2/…/θK]S,opt, must be a better initial 
approximation for the second cycle of Steps 1 to K.  
The iterative cycles continue until a converged 
solution is obtained. 

 

3 Numerical Results and Discussions 

3.1 Numerical Examples 
Numerical results are given for symmetrically 

laminated, 8-layered shallow shells and the elastic 
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constants used are for carbon/ epoxy composite: 
CFRP material:  

EL = 138GPa, ET = 8.96GPa,  
GLT = 7.1GPa, νLT =0.30.  

The planform has a square (a/b=1) and the thickness 
is moderate value (h/a=0.01). The boundary 
conditions are denoted by letters F, S and C, where F 
stands for free, S for simply supported and C for 
clamped edges, respectively. The kinematic 
boundary conditions for S and C are defined, e.g., 
along x=-a/2 edge, v=w=0 and u=v=w=∂w/∂x=0, 
respectively. 

The value of the rise H is taken as 
β=H/a=0.0251 and 0.0635, which have the same 
height with a/R=0.2 and 0.5, respectively, for 
cylindrically curved shells.  The stacking sequence 
is taken as general lay-up [θ1/θ2/θ3/θ4]s (S: 
symmetric) and the degree 45(°) is written as [(45/-
45)2] S for simplicity. 
     Three types of curvature models are considered 
for comparison: 
 

PLT model: PLaTe model (no curvature)  
SGC model: shell with SinGle Curvature   

(constant curvature a/R=0.2 or 0.5)    
NUC model: shell with Non-Uniform Curvature 

 (as shown in Fig. 1) 
 
The solution accuracy for natural frequencies of 
these plates and shells were already clarified in a 
previous report [9].   

 
 

Table 1 Optimum stacking sequence and 
corresponding frequency parameter of shallow shells 
with various curvature. 

[θ1/θ2/θ3/θ4]s,opt Ωopt

SSSS PLT [45/-45/-45/-45]s 56.32

NUC(β=0.0251) [45/-45/-45/45]s 72.77

SGC(a/Rx=0.2) [45/-45/45/-45]s 113.4

NUC(β=0.0635) [55/-50/-40/35]s 104.4

SGC(a/Rx=0.5) [5/0/-45/75]s 172.3

CCCC PLT [0/90/90/0]s 93.67

NUC(β=0.0251) [90/0/0/0]s 136.1

SGC(a/Rx=0.2) [0/0/0/0]s 239.4

NUC(β=0.0635) [0/90/0/0]s 215.4

SGC(a/Rx=0.5) [5/-20/40/-45]s 296.8  
 
 

3.2 Maximizing the Fundamental Frequencies 
The application of the present design method 

is to maximize the fundamental frequencies of the 
three types of plates and shallow shells.  Table 3 
presents the maximum frequency parameters Ω1,opt 

 
 

0

20

40

60

80

100

120

140

160

180

PLT NUC(1) NUC(2) SGC(1) SGC(2)

F
re

qe
u
n
c
y 

P
ar

am
e
te

r 
Ω

1

 
Fig. 2. Comparison of the optimum frequency and 

frequency parameters of 8-layer shallow square 
shells for typical lay-ups (SSSS shell, PLT:plate, 
NUC(1):β=0.0251, NUC(2):β=0.0635, SGC(1): 
a/R=0.2, SGC(2):a/R=0.5) 

 

 
Fig. 3. Comparison of the optimum frequency 

and frequency parameters of 8-layer shallow 
square shells for typical lay-ups (CCCC shell, 
PLT:plate, NUC(1):β=0.0251, NUC(2):β=0.0635, 
SGC(1): a/R=0.2, SGC(2):a/R=0.5) 
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Ω1=72.77           Ω2=142.0   

 
(a) NUC (β=0.0251, SSSS, [45/-45/-45/45]s) 
 
 
 
 
 
 

 
 
 

                Ω1=136.1      Ω2=187.6  
 

(b) NUC (β=0.0251, CCCC, [90/0/0/0]s) 
 
 
 
 
 
 
 
 
 

            Ω1=104.4      Ω2=184.8   
 

(c) NUC (β=0.0635, SSSS,[55/-50/-40/35]s) 
                                 

 
 
 
 
 
 
 
 

Ω1=215.4                Ω2=236.8   
 
(d) NUC (β=0.0635, CCCC, [0/90/0/0]s)      
 
  
 
  

 
 

 
 
 
 
 
 
 
 
          Ω3=153.6         Ω4=227.2 

 
 
 
 
 
 
 
 
 
 
 

Ω3=231.9                 Ω4=270.5 
 
 
 
 
 
 
 
 
 
 
 

Ω3=214.7              Ω4=233.5 
 

 
 
 
 
 
 
 
 
 
 

Ω3=296.5              Ω4=310.1 
 
 
 
 
 

Fig.4 Mode shapes and frequency parameters of the lowest four modes for the 
shallow shells with optimum lay-ups and non-uniform curvature  



 

7  

VIBRATION OPTIMIZATION OF LAMINATED SHALLOW SHELLS 
WITH NON-UNIFORM CURVATURE 

and the corresponding optimum lay-up 
[θ1/θ2/…/θK]S,opt obtained by the present design 
method for the shells with two typical boundary 
conditions of fully simply supported (SSSS) and 
clamped (CCCC) edges. For the SSSS plate (PLT) 
and relatively shallow NUC and SGC shells 
(β=0.0251 and a/Rx=0.2), the optimum lay-ups are 
[45/-45/-45/-45]s or similar lay-ups, but for 
relatively deep NUC and SGC shell (β=0.0635 and 
a/Rx=0.5) different lay-ups are found. For the CCCC 
shells, where the boundaries are strongly 
constrained, the effects of different lay-ups are 
diminished and the optimum lay-ups are mostly 
combinations of 0 and 90 degree. 

Comparisons are made in Figs.2 and 3 to 
demonstrate that the shells with the optimum lay-ups 
[θ1/θ2/θ3/θ4]s,opt actually give higher fundamental 
frequencies than shells with other stacking 
sequences. Typical stacking sequences of symmetric 
8-layer shells are chosen for comparison purposes, 
namely [04]s, [(0/90)2]s, [(30/-30)2]s, [(45/-45)2]s 
and [0/-45/45/90]s.  The first two are specially 
orthotropic shells denoted by ▲ and ◆  in the 
figures.  The third and fourth cases are the shells 
with alternating angle-ply sequences [(30/-30)2]s and 
[(45/-45)2]s denoted by ◇ and ○, respectively. The 
last one ([0/-45/45/90]s) is a quasi-isotropic lay-up, 
denoted by ●.  It is observed that all of the present 
optimum solutions (denoted by ■) have higher 
fundamental frequencies than the shells with the five 
typical lay-ups without exception. 

3.3 Vibration Mode Shapes of the Shallow Shells 
with the Optimum Lay-ups 

The vibration mode shapes of the shallow 
shells with the optimum lay-up configurations are 
presented for the NUC model in Fig.4(a)-(d) to study 
effects of varying the degree of curvature and 
boundary conditions.  Corresponding frequency 
parameters Ω1, Ω2, Ω3 and Ω4 are given below of the 
mode shapes.  There are four combinations of two 
degrees of shallowness (β=H/a=0.0251 and 0.0635) 
and two boundary conditions (SSSS and CCCC).   In 
the figures, the mark “×” represents the maximum 
displacement point and thin lines denote the 
displacement contour lines when displacements are 
normalized by the maximum displacement and 
divided into five equal increments. The thick lines 
represent the nodal lines (i.e., lines of zero 
displacement).  

In case (a) of relatively shallow shell (β=0.0251) 
with weak boundary constraints (SSSS), the effect of 
diagonally located fiber directions (45 or -45 degree) 
can be seen clearly on the distorted nodal and 
contour lines.  In contrast, case (b) has strong 
boundary constraint (CCCC) and parallel fiber 
orientation along the edges (0 or 90 degree), and 
these suppress the effect of non-uniform curvature 
giving almost straight nodal lines.  For relatively 
deep shells (β=0.0635), the mode shapes in (c) and 
(d) are similar to (a) and (b), respectively, but the 
effect of larger curvature than (a) and (b) causes 
more distorted in mode shapes except for the second 
mode., 

 
4 Conclusions 

A new combination of the analysis method and 
LO approach is proposed to determine the optimum 
lay-up design of the shallow shells with non-uniform 
curvature. The curvature variation is expressed in 
polynomials and is differentiated twice to obtain 
three curvatures of 1/Rx, 1/Ry and 1/Rxy. The Ritz 
method is used to derive a frequency equation.  In 
numerical examples, the shell geometry (NUC 
model) is proposed to model bonnet and roof 
structures of automobiles as a standard model.  By 
comparing the frequency parameters and mode 
shapes of the shells with optimum lay-ups among  
three models, the effects of varying the shallowness, 
boundary conditions are discussed on the optimum 
lay-up designs.   
     Thus the validity and effectiveness are 
demonstrated in numerical examples, and it is hoped 
that the present design method will be used to design 
the lay-up configurations for shell-type laminated 
composite structures with non-uniformly curved 
surfaces. 
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