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Abstract  

A method to optimise anisotropic composite 

plates that vary in thickness and properties across 

the width is presented. The optimisation problem is 

divided into two levels. At the first level, 

Mathematical Programming (MP) is applied, where 

the plate is divided into several strips, each of them 

modelled using lamination parameters accounting 

for their anisotropy. The laminate of each of the 

strips is assumed to be symmetric, or mid-plane 

symmetric with 0, 90, 45 or -45 degree ply angles. 

The plate is subjected to a combined loading under 

strength, buckling and practical design constraints. 

Manufacturing details of the plate are embedded 

within the design variables. At the second level, the 

actual lay-ups of the plate’s strips are obtained 

using a Genetic Algorithm (GA), accounting for 
manufacturability and design practices. The novelty 

of this work lies in: the inclusion of anisotropy for 

elastic tailoring, manufacturing and practical design 
considerations, as well as the application of the 

Rayleigh-Ritz (RR) method to assess buckling 

analysis in plates that vary in thickness and 
properties across the width. 

 

 

1 Introduction 

Composite primary flight structures are 

commonly designed using stiffened panels. Several 

effects, such as the stiffener flange over a plate or 

plates with variable thickness, might be 
characterized as plates made of several strips with 

step changes in thickness and other properties across 

width. In addition, the design of composite materials 
is directly linked to their manufacture. Common 

manufacturing practices within the aerospace 

community limit the ply angles to 0, 90, 45 and -45 
degrees. 

Early work on plates that change in thickness 

across the width was performed by Capey [1] and 

followed by Benthem [2]. They obtained exact 

solutions by solving the equilibrium equation. The 

plates were isotropic and idealised as symmetric 

sections with their edges simply supported. The 

effect of the thickness variation across the width on 

the buckling load capability of the plate was 

assessed.  

In contrast to metals, composite laminates 

might exhibit a certain degree of flexural anisotropy 

or elastic coupling terms. The presence of flexural 

anisotropy makes the determination of exact 

solutions for buckling problems rather complicated. 

Approximated solutions for buckling of anisotropic 

flat plates were initially obtained by Ashton and 

Waddoups [3] using the RR method [4]. The impact 

of flexural anisotropy on the critical buckling load 

was highlighted. Levy and Ganz [5] and later Levy 
[6] also employed the RR method to perform 

analysis and optimisation of orthotropic plates for 

buckling accounting for thickness variations. 
Gutierrez and Laura [7] employed the RR method to 

estimate the fundamental natural frequencies of a 

rectangular anisotropic plate, which varied 
discontinuously in thickness. More recently, Weaver 

[8]-[9] has provided Closed Form (CF) solutions for 

flexural anisotropic plates under combined loading 
with constant thickness across the width.  

An alternative to characterise composite 

materials properties was provided by Tsai and 
Pagano [10]. Laminated composite properties were 

obtained by using lamination parameters. Miki and 

Sugiyama [11] proposed the use of lamination 
parameters to perform composite optimisation. 

Haftka and Walsh [12] and Nagendra et al. [13] used 

integer programming and lamination parameters to 

carry out lay-up optimisation under buckling and 

strain constraints on symmetric and balanced 

laminated plates. Fukunaga et al. [14] used the RR 

method, MP and lamination parameters to maximise 
buckling loads of symmetric laminates with flexural 

anisotropy. However, none of the previous work has 
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investiagated the effect of varying both the thickness 

and other properties of an anisotropic plate across 
the width, as well as considering manufacturing and 

design practices. 

The authors’ previous work [15], based upon a 
two level optimisation approach which couples MP 

with GAs, has shown that material anisotropy can be 

used to improve the structural performance of 
composite stiffened panels.  

The aim of this paper is to provide an approach 

to optimise anisotropic composite plates that vary in 

thickness and properties across the width. The 
optimisation problem is divided into two levels. At 

the first level, MP is applied, where the plate is 

divided into several strips, each of them modelled 
using lamination parameters accounting for their 

anisotropy. The laminate of each of the strips is 

assumed to be symmetric, or mid-plane symmetric 
with 0, 90, 45 or -45 degree ply angles. The plate is 

subjected to a combined loading under strength, 

buckling and practical design constraints. The RR 
method is developed and applied to asses the 

buckling behaviour for this particular case. 

Manufacturing details of the plate are embedded 
within the design variables. At the second level, the 

actual lay-ups of the plate’s strips are obtained using 

GAs considering manufacturing and design 
practices. 

2 Plate geometry and loading 

Figure 1 defines the plate geometry, material 
axis and positive sign convention for the loading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Plate geometry and loading. 

 

The plate consists of three strips in which the 
central strip has different thickness and properties 

compared to the outer strips. Three different types of 

plate configurations are considered. Those are 
detailed in the design variables section.  

3 Laminate constitutive equations   

Laminate constitutive equations for each of the 
plate’s strips are obtained by applying the Classical 

Lamination Theory (CLT) [16] and lamination 

parameters (ξ) (e.g. Ref. [10]). Laminates are 

assumed to be symmetric or mid-plane symmetric 

laminates with 0, 90, 45 or -45 degree ply angles. 

Thus, 
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where [ ]A  is the membrane stiffness matrix, [ ]D  is 

the bending stiffness matrix, { }N  is the vector of the 

in-plane running loads, { }M  is a vector of the 

running moments, { }0ε  is the vector of in-plane 

strains and { }κ  is the vector of the middle surface 

curvatures. 

The membrane and bending stiffness matrices 

can be expressed in terms of material stiffness 

invariants (U) and eight lamination parameters (ξ). 

Furthermore, individual plies are considered 

orthotropic and laminated with fibre angles 

restricted to 0, 90, 45, and -45 degrees. 

Consequently, the lamination parameters are 

reduced to six. Hence, 

 





















































−

−

−

=



























5

4

3

2

1

3

3

2

21

2

21

26

16

66

22

12

11

000
2

0

000
2

0

1000

001

0100

001

U

U

U

U

U

h

A

A

A

A

A

A

A

A

A

AA

A

AA

ξ

ξ
ξ
ξξ
ξ
ξξ

    (2) 

Section AA'

smet
t

b

a

A

'A

x
F

y
N

xy
N

x

y

o
0

o45

o90

2/
sme

b
Section AA'

smet
t

b

a

A

'A

x
F

y
N

xy
N

x

y

o
0

o45

o90

2/
sme

b



 

3  

OPTIMISATION OF ANISOTROPIC PLATES THAT VARY IN THICKNESSES AND PROPERTIES 





















































−

−

−

=



























5

4

3

2

1

3

3

2

21

2

21

3

26

16

66

22

12

11

000
2

0

000
2

0

1000

001

0100

001

12

U

U

U

U

U

h

D

D

D

D

D

D

D

D

D

DD

D

DD

ξ

ξ
ξ
ξξ
ξ
ξξ

     (3) 

 

The material stiffness invariants are given as 

follows, 
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The ply stiffness properties (Q) are given by, 
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The membrane and bending lamination 

parameters are calculated by the following integrals, 

 

[ ] dz
h

h

h

A ∫−= 2

2
321

]2sin,4cos,2[cos
1

ϕϕϕξ   (11) 

[ ] dzz
h

h

h

D 22

2
3321

]2sin,4cos,2[cos
12
∫−= ϕϕϕξ (12) 

 

where ϕ  represents the fibre orientation angle at 

position z and h is the laminate thickness. 

4 Optimisation strategy 

The optimisation strategy is divided into two 

levels [15] and is shown in Fig. 2. At the first level, 

the plate is optimised using gradient based 

techniques. The optimum dimensions and values of 

the lamination parameters of the plate design are 

obtained. At the second level, a GA is used to target 

the optimum lamination parameters to obtain the 

actual lay-ups for each of the plate’s strips. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Optimisation strategy. 

4.1 First level - gradient based optimisation 

The gradient based optimisation is carried out 

in MATLAB [17]. The basic mathematical 

optimisation problem is stated as follows, 
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where M is the objective function or mass of the 

plate, G are the design constraints such as strength, 

buckling or practical design rules, and x
r
is the 

vector of the design variables.  

4.1.1 Objective function 

The objective function is the mass of the plate. 

Therefore, 
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( )tbtbaM
aaa

*ρρ +=     (14) 

 

where a is the length of the plate, t and at are the 

plate and reinforcement thicknesses, ρ  and aρ  are 

the plate and reinforcement densities, and *b and 

ab are the plate and reinforcement widths. Table 1 

relates the above properties to the different plate 

designs considered. 

4.1.2 Design variables 

The design variables, depending on the plate 

design, are shown in Table 1. Note that in plate 

designs a and b the outer strip is made of part of the 

plate and the reinforcement. In contrast, in plate 

design c the outer strip is the reinforcement.  

 

Table 1. Table of design variables 
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x
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4.1.3 Design constraints 

The design constraints considered for the 

optimisation of the plate are described in the 

following sections. 

1) Lamination parameter feasible region 

The lamination parameters feasible region is 

extracted from Ref. [15]. For instance, the 

membrane and bending lamination parameter 

feasible regions are given by, 
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2

,

1
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2
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Further details on these constraints can be 

found in Ref [18]. These constraints are imposed on 

the central and outer strips of the plate. 

2) Strength constraints 

Failure strength constraints are considered by 

restricting the laminate in-plane strains 

longitudinally, transversally and in shear, for both 

the tension and compression cases. Laminate strains 

under in-plane loading are determined by CLT. 

Hence,  
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The strength load factor is given by the ratio 

between the allowable and applied strain. Therefore, 

  

j

i

j

aij

i 0ε
ε

λ =     CTi ,= ;   xyyxj ,,=         (18) 

 

where 
aε  is the allowable strain, 0ε  is the applied 

strain, x, y, and xy represent the longitudinal, 

transversal and shear directions, respectively. Note 

that T and C denote tension and compression. 
Failure strength constraints are implemented as 

follows,  
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These constraints are applied to each of the 

plate’s strips. 

3) Buckling constraints 

The plate is assumed to be flat and with its four 

edges simply supported. The actual cross section of 

the plate is idealised as shown in Fig. 3, following 

Ref. [1].  
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Fig. 3. Idealised plate cross-section. 

 

It is assumed that the neutral axis passes 

through the centre of each of the strips of the plate. 

Furthermore, for plate design a, as the total laminate 
at the strip edge might present a certain degree of 

unsymmetry, smeared properties are assumed and 

the reduced bending stiffness approach [4] is taken. 
Thus, 
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where [ ]A and [ ]aA are the membrane stiffness 

matrices of the plate and reinforcement, as well as 

[ ]D  and [ ]aD  are the bending stiffness matrices of 

the plate and reinforcement, respectively. 

The RR method is used to perform the 

buckling analysis. The RR method is based on the 

principle of minimum potential energy. The 

potential energy of a system has at equilibrium an 

extremal value [19]. For the neutral equilibrium the 

potential energy due to bending ( )
TV  is balanced by 

a factor ( )λ  of the work done by the external 

loads ( )
TW . Hence, 
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The potential energy due to bending is given 

by, 
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where [ ]D  is fully populated.  

The work done by the external loads is given 

by, 
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For the solution procedure, the out-of-plane 

displacement shape is represented by a double sine 

Fourier series, since it satisfies the simply supported 

boundary conditions at the plate edges. Thus, 

 

∑∑ 














=
n

j

mn

m

i b

yn

a

xm
Aw

ππ
sinsin        (29) 

 

where mnA  are undetermined coefficients. 

The critical buckling load is given by the 

lowest value or critical factor ( )
bλ , which is 

obtained by minimizing Eq. (26) with respect to the 

mnA  coefficients. Hence, 
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This provides an eigenvalue problem in λ , 

where the smallest non-zero solution is the critical 

factor. Therefore, the critical buckling load is given 

by, 
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As the plate consists of three strips, the 

expression for the potential energy and external 

work is given as a sum of the potential energy and 

external work of each of the plate’s strips. Hence, 
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The initial and final widths of the plate’s strips 

used for the integration over the plate width, are 

given by, 
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and  
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with 3,2,1, =fi . 

Once the critical buckling factor is identified, 

the buckling constraint is expressed as, 

 

01 ≤− bλ    (35) 

 
4) Practical design constraints 

Practical design rules are taken from Ref. [15]. 

Those constraints are described in the following 

sections. 

Percentages of ply angles 

Niu [20] suggested that in composite design at 

least 10% of each ply angle should be provided. The 
maximum and minimum percentages of the ply 

angles for the reinforcement and plate are limited. 

The percentages of the 0, 90, 45, and -45 degree ply 
angles for each of those elements are expressed as, 
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The design constraint imposed for the 

maximum and minimum percentages of the 0, 90, 

45, and -45 degree ply angles, is as follows, 
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Plate-reinforcement Poisson’s ratio mismatch 

The reduction of the Poisson’s ratio mismatch 

is critical in composite bonded structures [20]. The 

difference between the plate and the reinforcement 

Poisson’s ratio is limited by a tolerance (ζ) to reduce 

the mismatch. An acceptable value of ζ is assumed 

to be 0.05. 

The Poisson’s ratio mismatch design constraint 

is implemented as, 
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This constraint is applied to the outer strips of 

the plate for plate design a. 

4.2 Second level - GA based optimisation 

A standard GA [21]-[22] is used to solve the 

discrete lay-up problem. The GA used has the 

following operators: initial population, crossover, 
reproduction, mutation and elitism. Note that the GA 

is applied separately to each of the strips (plate and 

reinforcement). 

4.2.1 Fitness function 

The fitness function used is given by the sum 

of the square difference between the optimum and 

actual lamination parameters [18] plus extra penalty 

terms to account for ply contiguity constraints. 

Therefore, 
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where y
r
is the design variable vector or gene 

representing the lay-up, DA

iwf , are the weighting 

factors for the lamination parameters and 
kΘ  are 

penalty functions terms to limit the number of plies 

of the same orientation stacked together. The value 

of 
kΘ  is 1, when more than 4 plies of the same 

orientation are stacked together [12] otherwise it is 
0. 

4.2.2 Design variables - Genes 

The design variables are the thickness and the 

0, 90, 45 and -45 degree ply angles that constitute 

the actual lay-ups for the central and outer strips of 

the plate (plate and reinforcement). Those variables 

are characterised as chromosomes in genes within 

the GA. The corresponding encoded chromosomes 

to ply angles are: 1, 2, 3, 4, 5, 6 and 7 for ± 45, 902, 

02, 45, -45, 90 and 0 degrees, respectively.  

The total laminate thickness is given by h, the 

encoded ply angle is θ  and n corresponds to half or 

half plus one plies depending on whether the skin 

laminate is symmetric or mid-plane symmetric. 

 

h  
1θ  

2θ  .. .. 
1−nθ  

nθ  

 

7,6,5,4,3,2,1=iθ    

Fig. 3. Gene with chromosomes for the laminate. 

 

5 Numerical examples 

First of all, the RR method developed in this 

paper was compared against Finite Element (FE) 
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analysis using MD NASTRAN [23]. Figs. 4 and 5 

show the buckling coefficient for a simply supported 
isotropic and angle ply (45 degrees) plate of design a 

with an aspect ratio (a/b) of 10, under longitudinal 

loading. A typical aluminium alloy was used for the 
isotropic plate with the following properties: 

72000=E  N/mm2, 26900=G  N/mm2 and 3.0=ν . 

The angle ply plate used AS4/3502, which has the 

following properties: 8.12755311 =E  N/mm
2
, 

47.1130722 =E  N/mm
2
, 3.012 =ν , 48.599812 =G  

N/mm2. The RR method was used with 400 terms in 

the double sine series (m = n = 20). An FE model of 

the plate design type a, was set up and a linear 

buckling analysis was performed in MD NASTRAN 

using SOL 105 [24]. The plate was modelled using 

quadrilateral elements with four nodes (CQUAD4) 

and maintaining a minimum of five nodes per half 

wave length
 
[24]. Membrane and bending properties 

for the plate and reinforcement respectively were 

introduced as PSHELL and MAT2 cards. Note that 

the FE analysis was only performed for 

reinforcement and plate width ratios ( bba / ) of 0.2, 

0.4, 0.6 and 0.8. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
Fig. 4. Buckling coefficient for an isotropic plate 

design a with 4 edges simply supported (a/b = 10). 

 

The results show an excellent agreement 

between the RR method and FE analysis, having a 

maximum difference of approximately 2.8% and 

5.6% for the isotropic and anisotropic (angle ply of 

45 degrees) plate. It is observed that the difference 
in results between the RR method and FE increases 

with anisotropy.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Buckling coefficient for an anisotropic 

(angle ply of 45 degrees) plate design a with 4 edges 

simply supported (a/b = 10). 

 

Ref. [15] was also used to evaluate the RR 
method. The material was also AS4/3502. Plate 

design a was used as the data was extracted from a 

stiffened panel. The skin and stiffener flange were 
modelled as the plate and reinforcement 

respectively. The length and width of the plate were 

762 mm and 203.2 mm respectively. The width of 
the reinforcement was 60.96 mm. Two cases were 

considered. The normal forces for cases A and B 

were 381953.21−=xF N and 33.390266−=xF N 

respectively. In all cases the shear load was 

63.875−=
xy

N N/mm
2
. Table 2 shows the plate and 

reinforcement lay-ups for those cases. Note that the 

laminate in case B exhibits membrane and flexural 

anisotropy. Table 3 lists the buckling load factors 

using the RR method with 400 terms in the double 

sine series (m = n = 20) and the FE analysis as 

previously stated. 

Examining the buckling load factors from 

Table 3, it is clearly seen that good agreement is 

found between the RR method and FE for case A 
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(approx. 3.8% difference). In contrast for case B, the 

RR method and FE show a difference of 
approximately 13%.  

 

Table 2. Plate designs a properties (S –symmetric, MS – 

mid-plane symmetric). 

Case 
Lay-up-[0%/45%/-45%/90%] 

 

A 

Plate (32 plies)-[0/37.5/37.5/25] 
[±45/904/(±45)5]S 

Reinforcement (68 plies)-[47/26.5/26.5/0] 

[(±45)4/02/(±45)2/(04/±45)3/02]S 

B 

Plate (33 plies)-[0/42/21/36] 

[±45/904/45/902/452/(±45)2/45/-45]MS 

Reinforcement (67 plies)-[58/21/21/0] 

[(±45)3/02/45/(02/±45)2/04/45/ 

(04/-45)2/0/0]MS 

 

Table 3. Buckling load factors comparison 

Case FE RR 

A 1.04 1.08 

B 1.08 1.22 

 

Differences between analyses are expected 

especially when laminates contain anisotropy as the 

convergence of the RR method toward the actual 

solution will be slow. This is because the shape 

chosen for the out-of-plane displacement (Eq. (29) 

only satisfies the geometric boundary conditions but 

not the natural boundary conditions of the problem. 

Note that the FE estimation of the actual solution is 

mesh and element type related. Nevertheless, the RR 

method is easy to encode and faster than FE. So for 

initial sizing optimisation where design evaluation is 

more important than analysis accuracy the RR 

method is a good option. 

Next, the two level approach was applied to 

optimise a plate under strength, buckling and 

practical design constraints. The plate length and 

width were 800 mm and 200 mm, respectively. The 

plate and reinforcement were made of AS4/3502 

with a ply thickness of 0.132 mm and a density of 

1.578 10
-6
 kg/mm

3
. The plate has to withstand a 

normal load in compression of 350 kN, a transverse 

running load in compression of 100 N/mm and a 

shear load of -250 N/mm. The plate strain cannot 

exceed ±3600µε in the longitudinal and transverse 

directions, and ±7200µε in shear. For design practice 

the minimum width of the outer strip cannot be less 

than 50 mm and laminates must contain at least 10% 

of each ply angle. At the first level, gradient based 

optimisation was carried out under strength, 

buckling and practical design constraints. At the 
second level, a GA code was used with a population 

of 40, 200 generations, a 0.7 probability of 

crossover, a 0.05 probability of mutation, with all 
weighting factors for the lamination parameters 

equal to 1, ply contiguity constraints and locating at 

least one set of ±45 degree plies at the outer surface 
of the plate and reinforcement laminates. The 

weights, load factors and dimensions for the 

different plate designs are shown in Table 4. Table 5 

lists the lay-ups for the three plate designs.  
 

Table 4.  Continuous (Wc) and discrete (Wd) weights, load 

factors and reinforcement widths for the optimum plate 

designs. FE buckling load factors are shown in brackets. 

Plate 

design 

Wc/Wd 

[kg] 
bλ  sλ  bsme 

[mm] 

a 
1.57/ 

1.62 

1.07 

(0.98) 
0.99 50.01 

b 
1.56/ 
1.69 

1.22 
(1.18) 

0.97 62.95 

c 
1.51/ 

1.58 

0.98 

(0.95) 
1.03 50.21 

 

Table 5. Lay-ups for the optimum plate designs (S –
symmetric, MS – mid-plane symmetric). 

Plate 

design 

Lay-up-[0%/45%/-45%/90%] 

 

a 

Plate (32 plies)-[31/31/19/19] 

[±45/452/90/(±45)2/03/902/02]S 

Reinforcement (67 plies)-[64/12/12/12] 
[±45/02/90/(±45/02)2/02902/04/-45/ 

04/45/04/90/0/0]MS 

b 

Plate (14 plies)-[14/58/14/14] 

[±45/90/453/0]S 

Reinforcement (72 plies)-[64/11/11/14] 

[±45/90/±45/04/902/04/45/02/±45/ 

03/-45/(04/90)2/02]S 

c 

Plate (32 plies)-[31/19/12/38] 
[±45/45/0/45/(902/02)2/902/-45]S 

Reinforcement (93 plies)-[65/11/13/11] 

[(±45/03)2/0/-45/04/±45/02/45/04/ 
90/04/±45/04/-45/902/04/902/0/0]MS 

 
From the results, it is clearly seen that the 

lightest and the heaviest designs correspond to plate 

design c and b, respectively. However, the plate 

design c does not maintain continuity in plies 

between the outer and central plate’s strips. A 

weight penalty for maintaining continuity in plies 
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across the width are approximately 2.5% and 7% for 

plate designs a and b, respectively. 
It is observed, as one might expect, that the 

reinforcement tends to have high percentages of 0 

degree plies to transfer axial loading whereas the 
plate consists of more ±45 (unbalanced) and 90 

degree plies to improve buckling behaviour under 

combined loading. Note that the plate laminates 
contain membrane and flexural anisotropy. In this 

case and as it is shown in Ref. [15] material 

anisotropy and hence elastic tailoring is used to an 

advantage.  
Furthermore, it is observed that the RR and FE 

buckling load factors do not show significant 

differences (max. approx. 9%). 

Conclusion 

A method to optimise anisotropic composite 

plates that vary in thickness and properties across 

the width has been presented. The optimisation 

problem is divided into two levels. At the first level, 

MP is applied, where the plate is divided into several 

strips, each of them modelled using lamination 

parameters accounting for their anisotropy. The 

laminate of each of the strips is assumed to be 

symmetric, or mid-plane symmetric with 0, 90, 45 or 

-45 degree ply angles. The plate is subjected to a 

combined loading under strength, buckling and 

practical design constraints. Three types of plate 

configuration are considered depending on 

manufacturing or design requirements. The buckling 
behaviour is assessed by the RR method taking into 

account variation in thickness and properties across 

the width. At the second level, the actual lay-ups of 

the plate’s strips are obtained using a GA bearing in 

mind design practices. 

The two level approach has been applied to 

optimise a plate with a reinforcement subject o 

combined loading and under strength, buckling and 

practical design rules. It has been shown that the 

lightest plate design corresponds to a plate that does 

not maintain continuity in plies between adjacent 

strips. The least weight penalty for keeping this 

continuity is approximately 2.5% and corresponded 

to plate design a.  

The RR method herein developed captures the 

buckling behaviour of a plate that varies in thickness 

and properties across the width or has a 

reinforcement. It can be applied to produce design 

charts as shown in Fig. 4-5. Additionally, it can be 

applied to stiffened panels to evaluate the local 

buckling behaviour of the skin when the stiffener 

flanges act as a reinforcement.  

Furthermore, elastic tailoring is used to an 

advantage. 
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