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Abstract  

Fractal branch-and-bound method has been 

developed by the authors for stacking-sequence 

optimizations of composite laminates. However, the 

method was limited to the symmetric and balanced 

composite laminates. 

In the present study, we focus on the stacking-

sequence optimizations of all feasible laminates 

including asymmetrical composite laminates. In the 

asymmetrical laminates, nine lamination parameters 

including three coupling-lamination parameters 

exist, and its feasible design region of fractal pattern 

is unrevealed. The paper clarifies the feasible region 

in which the in-plane, out-of-plane and coupling 

lamination parameters create fractal patterns of 

tetrahedrons or tetradecahedrons. Using the fractal 

patterns of lamination parameters, the improved 

fractal branch-and-bound method is proposed for 

asymmetrical laminates. This new method is applied 

to stacking-sequence optimization problems of 

maximization of buckling load of cylindrical 

laminated shells. As a result, the method is 

successfully applied, and a practical optimal 

stacking-sequence is obtained with low 

computational cost. 

 

 

1 Introduction 

Since the mechanical properties of composite 

laminates strongly depend on stacking sequences, 

stacking-sequence optimizations are indispensable 

for laminated composite structures. In a practical use, 

the fiber angles in a laminate are limited to small 

sets comprise of 0º, ±45º and 90º-plies, because of 

lack of experimental data or fabrication process 

efficiency. To comply with this demand, stacking-

sequence optimizations become combinatorial 

optimization problems of selecting a required 

number of plies of each orientation and determining 

an optimal stacking-sequence. Combinatorial 

optimization problems, however, usually require 

large computational resources. 

To solve stacking-sequence optimization 

problems, genetic algorithms (GAs) are generally 

used because the GAs are admitted to be effective 

for combinatorial optimization [1-3]. The GA, 

however, requires high computational cost because 

the algorithm repeats evaluations for numerous 

genes and by generations. To reduce the 

computational cost for the stacking-sequence 

optimizations, Todoroki and Haftka [1] employed a 

response surface for reduction of evaluation cost. 

This response surface method adopts lamination 

parameters introduced by Miki [4] and Fukunaga [5] 

as variables of the response surface. Using 

lamination parameters, the number of variables is 

independent of the number of plies, and quadratic 

polynomials are enough to approximate entire 

objective function. The GA, however, still requires a 

large number of adjustments to obtain high 

performance, and the method cannot always obtain 

the real optimal stacking-sequence because the 

method is probabilistic approaches. 

Todoroki et al. [6-9] has proposed a fractal 

branch-and-bound method as a deterministic 

optimization method of stacking sequences based on 

a well-known branch-and-bound method. This 

method has been applied to stacking-sequence 

optimization problems such as maximizing buckling 

load of a hat-type stiffener [7], and improving flutter 

limit of composite delta wing [9]. 

This method, however, is limited to the 

problems for symmetrical and balanced laminates. 

The symmetrical and balanced laminates can be 

approximately treated as orthotropic laminates, 

which require only two in-plane and two out-of-
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plane lamination parameters as design variables. The 

set of the orthotropic laminates creates two-

dimensional fractal patterns when they are plotted in 

the coordinates of the in-plan and out-of-plane 

lamination parameters [7]. The symmetrical 

laminates are widely used as composite panels 

because coupling stiffness matrix is equal to zero: 

they do not have coupling stiffness between tension 

and bending. However, for structures regarded as 

symmetrical as an entire structure like cylindrical 

laminated shells or thin walled prismatic columns, 

the asymmetrical laminates has to be taken into 

account for the stacking-sequence optimization [10-

13]. In addition, asymmetrical laminates are also 

favored for helicopter blades or fan blades of aircraft 

engines because the asymmetrical laminates have 

smart functions owing to coupling effect [14-18]. 

Although the fractal branch-and-bound method 

needs to be improved for stacking-sequence 

optimization of asymmetrical laminates, the detailed 

feasible fractal pattern of coupling lamination 

parameters is quite complicated and not revealed. 

In the present study, we propose an improved 

fractal branch-and-bound method, which can be 

applied to stacking-sequence optimizations of 

asymmetrical laminates. In asymmetrical laminates, 

three coupling lamination parameters exit as well as 

three in-plan and three out-of-plane lamination 

parameters. We reveal the detailed feasible region of 

lamination parameters of asymmetrical laminates 

when the fiber angle is limited to 0°, ±45° and 90°; it 
indicates that the in-plane and out-of-plane 

lamination parameters create self-similar fractal 

patterns of tetrahedrons, and the coupling lamination 

parameters create that of tetradecahedrons. Using the 

fractal patterns of in-plane, out-of-plane, and 

coupling lamination parameters, the improved 

fractal branch-and-bound method is proposed here. 

The proposed method is applied to stacking-

sequence optimizations of buckling-load 

maximization of composite cylindrical shells. 

 

2 Stacking Sequence Optimization Method 

2.1 Lamination Parameter 

In-plane stiffness terms of asymmetrical 

laminates are represented with in-plane lamination 

parameters (e.g. Ref. [13]). The in-plane lamination 

parameters are defined as follows: 
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where h is the thickness of laminate, z is coordinate 

of thickness direction, the origin locates in the end 

of the plate, θ (z) is the fiber angle of the location z, 
and ak

A
 is defined as follows: 

N
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Coupling stiffness terms of asymmetrical 

laminates are represented with coupling lamination 

parameters. The coupling lamination parameters are 

defined as follows: 
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Out-of-plane stiffness terms of asymmetrical 

laminates are represented with out-of-plane 

lamination parameters. The out-of-plane lamination 

parameters are defined as follows: 
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where 
3

2

2
4 







 −
=

N

Nk
aD

k
                     (6) 

For most of practical laminated composite 

structures, fiber angle is limited to small set such as 

0º, 45º, −45º, and 90º because of lack of 

experimental data and fabrication process. Let us 

consider the case that the fiber angle is limited to the 

small set. The values of sin4θk in Eqs. (1), (3) and 

(5), therefore, are always equal to zero, all values of 

V
A, B, D

4 are equal to zero. This makes the reduced 

lamination parameter vectors of three dimensions. 

 

2.2 Response Surface Method 

An objective function is approximated using 

response surface methodology [19]. The method 

provides approximation function between predictor 

variables and a response. In this study, the response f 
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is approximated with response surface of a quadratic 

polynomial. 
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where β is the unknown coefficient, x is predictor 
variables, and M is the number of predictor variables. 

The unknown coefficient are estimated with a least-

square-error method of a linear multiple regression. 

To judge the performance of the approximation 

of the response surface, the adjusted coefficient of 

multiple determination Radj
2
 (R-square-adjusted) is 

used: 
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where Syy is the total sum of squares, SSE is square 

sum of errors, n is the number of experiments, and 

the k is the total number of unknown coefficients. 

Each coefficient of the response surface can be 

tested by using t-statistic. 

In the present study, the variables are in-plane, 

out-of-plane, and coupling lamination parameters, 

V
A
1, 2, 3, V

D
1, 2, 3, and V

B
1, 2, 3, and the response y is the 

objective function. We adopt quadratic polynomials 

for the function of response surface [20]. For the 

simplicity, when substituting as V
A
1, 2, 3 = V

A
, V

B
1, 2, 3 

= V
B
, and V

D
1, 2, 3 = V

D
 the response surface is 

expressed as follows: 
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where c, b, A is the unknown constant, vector, and 

matrix coefficients. Because the number of unknown 

coefficients of the response surface of the quadratic 

polynomials is 55, 110 laminates are needed for the 

accurate approximation empirically. To select best 

set of 110 stacking sequences from all feasible 

stacking sequence, D-optimal design of experiments 

(DOE) methods is used. The minimum variance of 

the coefficient can be obtained by using the DOE. 

 

2.3 Fractal Pattern of Feasible Laminates 

When the fiber angle is limited to a small set 

such as 0º, 45º, −45º and 90º, all values of the in-
plane, out-of-plane, coupling lamination parameters 

defined in Eqs. (1), (3) and (5) are expressed as 

follows: 

45459090454500]3,2,1[ −−+++= nnnnV
XXXXX ssssT        (10)
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where n is the vectors of each fiber angle and s is the 

coefficient defined as follows: 
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δk 3= 1 when θk = θj  with j = 0º, ±45º, 90º 

δk= 0 when θk ≠  θj with j = 0º, ±45º, 90º 

The coefficient s in Eq. (10) satisfies the 

following equations per Eqs. (1), (3), and (5): 

10 ≤≤ X

js                 with X = A, D    (13) 

2121 ≤≤− B

js                                        (14) 

19045450 =+++ −
XXXX ssss       with X = A, D    (15) 

09045450 =+++ −
BBBB ssss                                 (16) 

The Eqs. (13) and (15) indicate that any vector 

of in-plan and out-of-plane lamination parameters, 

V
A
1, 2, 3 and V

D
1, 2, 3, can be plotted inside of the 

tetrahedron represented by four vectors defined in 

Eq. (11): (1, 1, 0), (0, −1, 1), (−1, 1, 0), and (0, −1, 
−1). 

In the proposed fractal branch-and-bound 

method for asymmetrical laminates, the optimal 

stacking sequence is searched from outer layers of 

both sides because the outer layers have more effect 

on the out-of-plane and coupling lamination 

parameters indicated in Eqs. (3) and (5) [21]. An 

entire set of the feasible stacking sequence can be 

expressed as a large tree as shown in Fig. 1. Let us 

consider the following general case that outer d plies 

in N total plies have been already decided:  
[θ1/θ3/…/θd-1/*/…/*/θd/…/θ4/θ2] when d is even (17) 

[θ1/θ3/…/θd/*/…/*/θd-1/…/θ4/θ2] when d is odd   (18) 

ººº
[0/∗/.../∗]

[02/∗/.../∗] [0/45/∗/.../∗] [0/-45/∗/.../∗] [0/90/∗/.../∗]

[45/∗/.../∗] [-45/∗/.../∗] [90/∗/.../∗]

[03/∗/.../∗]

0º

0º º º º

0º º º º 0º º º º 0º º º º 0º º º º

N

4
N

 
Fig. 1. Fractal branch structure of a stacking 

sequence tree. 



RYOSUKE MATSUZAKI, Akira Todoroki  

4 

where θ is the decided fiber angle and asterisk 
means the undecided fiber angle. 

The in-plane and out-of-plane lamination 

parameters, V
A
1, 2, 3 and V

D
1, 2, 3, in case of the 

stacking sequence in Eqs. (17) and (18) are as 

follows: 
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The sum of coefficients sj in Eqs. (22) and (23) 

are equal to (a
X
N – d / 2 – a

X
d / 2) and (a
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X
(d+1) / 2), respectively. Let us rewrite the coefficient 

s as follows: 
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This expression indicates that coefficient p 

satisfies the Eqs. (13) and (15) and that  the 

coefficients are treated as the same as the coefficient 

s. Using this p, the in-plane and out-of-plane 

lamination parameters, V
A
 and V

D
, of the laminates 

in Eqs. (17) and (18) are rewritten as follows: 
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Eqs. (26) and (27) indicate that the laminates 

expressed by  Eqs. (17) and (18) create self-similar 

tetrahedrons of which the center points are moved to 

V
A
0 and V

D
0, respectively. These are self-similar 

shrunk tetrahedrons by the factor (r
A,D

d) of (a
A,D

N-d / 2 

– a
A,D

d / 2) and (a
A,D

N-(d-1) / 2 – a
A,D

(d+1) / 2). Similarly, 

the self-similar smaller tetrahedrons are created 

inside of the tetrahedron as the fiber angle is decided 

from outer-ply. This process creates a fractal pattern 

of all feasible laminates. When the total plies of 

laminates N are six, fractal pattern of all self-similar 

tetrahedrons is shown in Fig. 2. 

On the contrary, the coefficient s of coupling 

lamination parameters is expressed as Eqs. (14) and 

(16), and does not satisfy Eqs. (13) and (15). This 

indicates that the coupling lamination parameters are 

not always plotted inside the tetrahedron represented 

by the four vectors defined in Eq. (11), which means 

 
(a) In-plane lamination parameter, V

A
1, 2, 3. 

 
(b) Out-of-plane lamination parameter, V

D
1, 2, 3. 

Fig. 2. Fractal tetrahedron pattern of feasible 

laminates drawn by plotting all feasible laminates of 

six plies in lamination parameters. 
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the coupling lamination parameters V
B
1, 2, 3 does not 

create a tetrahedral fractal pattern. 

To clarify the feasible region of the coupling 

lamination parameters V
B
1, 2, 3, Eq. (3) in case that 

total number of laminates N are even number is 

rewritten as follows: 

∑∑=
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Even if the N is odd number, the procedures 

are similar to in case of even number except for 

treatment of the mid layer (V
B
1, 2, 3=0). 

From ni / i  = 0, Eq. (31) is rewritten as follows: 
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The coefficient s in Eq. (34) satisfies the 

following equation per the definition of s in Eq. (32). 

10 / ≤≤ B

jis                                  (36) 

11 45/4590/9045/450/0

90/4545/450/4545/9045/900/90

45/4590/450/4545/090/045/0

≤−−−−=

+++++

++++++

−−

−−−−

−−

BBBB

BBBBBB

BBBBBB

ssss

ssssss

ssssss

     (37) 

Eqs. (36) and (37) indicate that any vector of 

coupling lamination parameters V
B
1, 2, 3 can be 

plotted inside of the tetradecahedron represented by 

12 vectors defined in Eq. (35) as shown in Fig. 3 

[22]. 

As is the case with in-plan and out-of-plane 

lamination parameters, let us consider the general 

case that outer d plies in N total plies have been 

already decided as shown in Eq. (17). The coupling 

lamination parameters V
B
1, 2, 3 of the laminates are 

expressed as follows: 

∑∑+=
i j

ji

B
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BB sT //0]3,2,1[
nVV with  i, j  = 0, ±45, 90  (38) 

where V
B
0 and s i / j

B
 are defined as follows: 
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The sum of coefficient s in Eq. (40) is equal to 

2a
B
N-d / 2. And let us rewrite the coefficient s as 

follows: 

B
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Eq. (41) indicates that coefficient p satisfies the 

Eqs. (36) and (37) and are treated as s. Using this p, 

the coupling lamination parameters V
B
 of the 

laminates shown in Eq. (17) are expressed as 

follows: 
B

d

B

dN

BB a VVV 2/0 2 −+=                      (42) 
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Eqs. (42) and (43) indicate that the laminates in 

Eq. (17) create self-similar tetradecahedrons of 

 
Fig. 3. Feasible region of coupling lamination 

parameter, V
B
1, 2, 3. 
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which the center points are moved to B

0V
. This is a 

self-similar shrunk tetradecahedron by the factor B

dr  

of 2a
B
N-d / 2. Similarly, the self-similar smaller 

tetrahedrons are created inside of the tetrahedron as 

the fiber angle is decided from outer-ply. This 

process creates a fractal pattern of all feasible 

laminates. When the fiber angles of two outer layers 

in the total six plies are decided, [θ1/∗/.../∗/θ2], the 

shrunk self-similar tetradecahedrons are shown in 

Fig. 4 (a)-(m). Fig. 5 shows the more shrunk 

tetradecahedrons when the two outer fiber angle is 

decided: [0/θ1/∗/.../∗/θ2/90]. 

In case that the odd d layers are decided as 

shown in Eq. (18), the feasible region of coupling 

lamination parameters are created inside of the 

irregular tetradecahedron including four 

tetradecahedrons when even (d+1) layers is decided. 

For example, let us consider the laminates [0/∗/…/∗] 
(d=1, θ1=0º, N=6). The feasible region of coupling 

lamination parameters of the laminates includes four 

tetradecahedrons of [0/∗/…/∗/0], [0/∗/…/∗/45], 
[0/∗/…/∗/90], [0/∗/…/∗/-45] as shown in Fig. 4(a)-
(d), and creates the irregular tetradecahedron. Fig. 6 

shows all tetradecahedrons in case of the laminates 

of N=6. As you can see, the tetradecahedrons creates 

a fractal pattern. 

Fig. 7 shows the shrunk factor of self-similar 

tetrahedrons and tetradecahedrons to original 

tetrahedrons and tetradecahedrons of in-plane, out-

of-plane or coupling lamination parameters. In Fig. 7, 

the abscissa is the number of decided layers d, and 

the ordinate is the shrunk factor, A

dr , B

dr  and D

dr  of 

in-plane, coupling and out-of-plane lamination 

parameters. The open triangle symbol indicates B

dr  

when the fiber angle is decided from outer layers of 

both sides as Eqs. (17) and (18), and the solid 

triangle symbol indicates B

dr  when the fiber angle is 

decided from the outer layers from one side as 

follows: 

[θ1/θ2/…/θd/*/…/*]                       (44) 

As shown in Fig. 7, the shrunk factor of both 

sides is smaller than that of one side. This means 

that deciding the fiber angles from outer layers of 

both sides limits the feasible region of laminate 

parameters strictly at an early stage in process of 

deciding the fiber angles, which decreases the 

computational cost. 

 

2.4 Fractal Branch and Bound Method 

The feasible regions of in-plane, out-of-plane 

and coupling lamination parameters of undecided 

laminates V
A
1, 2, 3, V

D
1, 2, 3 and V

B
1, 2, 3 is converged 

 
(a) [θ1/∗/…/∗/ θ1]   (b) [0/∗/…/∗/45]   (c) [0/∗/…/∗/90] 

 
(d) [0/∗/…/∗/−45]   (e) [45/∗/…/∗/0]   (f) [45/∗/…/∗/90] 

 
(g) [45/∗/…/∗/−45]   (h) [90/∗/…/∗/0]   (i) [90/∗/…/∗/45] 

 
(j) [90/∗/…/∗/−45]  (k) [−45/∗/…/∗/0]  (l) [−45/∗/…/∗/45] 

 
(m) [−45/∗/…/∗/90] 
Fig. 4. Feasible regions of coupling lamination 

parameter when [θ1/∗/…/∗/ θ2] of six plies. 

 
Fig. 5. Feasible regions of coupling lamination 

parameter when [0/θ1/∗/∗/θ2/ 90] of six plies (θ1, 

θ2=0, ±45, 90). 
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into the smaller self-similar tetrahedrons or 

tetradecahedrons inside of the original tetrahedrons 

or tetradecahedrons as the fiber angles are decided 

from outer layers. 

In the fractal branch-and-bound method, a 

branch-and-bound method is performed to obtain the 

optimal stacking-sequence, which maximizes the 

response surface of an objective function. For the 

branch-and-bound method, an efficient evaluation 

function prunes inefficient branches during 

searching. Evaluating the objective function at each 

branch can be performed using response surface 

function. To evaluate the fractal branch safely, Eq. 

(26), (27) and (42) is substituted into Eq. (9). The 

objective function is transformed as follows: 
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where f0 is constant, AV
f ' , 

BV
f '  and 

DV
f '  are 

quadratic polynomial of V
A
, V

B
 and V

D
, respectively. 

The 
BAVV

f ' , 
DBVV

f '  and 
ADVV

f '  are the interaction 

terms of V
A
 and V

B
, V

B
 and V

D
, and V

D
 and V

A
, 

respectively. 

The conservative estimation function g is 

defined as follows: 

ADDBBA

DBA

VVVVVV

VVV

fff

ffffg

'max'max'max

'max'max'max0

++

++++=
            (48) 

Since the estimation function g satisfies the 

following inequality, g is conservative estimation. 

fg max≥                              (49) 

Each term of Eq. (48) corresponds to the 

maximum value in shrank tetrahedron or 

tetradecahedron. This each maximum value is 

obtained using quadratic polynomial function of 

response surface method as the objective function. 

The coupling lamination parameters V
B
1, 2, 3 create 

the irregular tetradecahedrons when the number of 

the decided fiber angles is odd; it needs the 

redefinition of the feasible region repeatedly, and 

increases the computational cost. To reduce its 

consumption of high computational cost, the V
B
 

region in case of odd d is substituted by the outer 

even (d−1) tetradecahedrons. 
Search of the optimal stacking-sequence starts 

from a provisional optimal laminates. The 

provisional optimal laminate is selected in a way 

that the fiber angle is decided from outer layers as 

maximizing the objective function at each branch 

with the once determined fiber angles fixed. Once 

the provisional optimal stacking sequence is selected, 

the fractal branch-and-bound method is used to 

obtain the optimal stacking sequence that 

maximizing the objective function. We start the 

searching of the branch of [0/*/.../*]. The shrunk 

tetrahedron and tetradecahedron of the branch of the 

 
Fig. 6. Fractal tetradecahedron pattern of feasible 

laminates drawn by plotting all feasible laminates of 

six plies in coupling lamination parameters. 
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Fig. 7. Shrank factor of fractal pattern of 36 plies. 
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set of the laminates are easily calculated, and the 

maximum value of the response in the shrunk 

tetrahedron and tetradecahedron are also estimated. 

If the estimation value is lower than the provisional 

one, this means that any stacking sequence that has 0 

deg ply at outermost layer does not have better 

objective value. The searching into the inner 

tetrahedral or tetradecahedron is aborted, which 

means the branch can be pruned. Otherwise, if 

estimated value is higher than the provisional one, it 

means the tetrahedron might have a better stacking 

sequence. The solution searching continues into the 

inner tetrahedrons or tetradecahedrons. This 

procedure is repeated until all branches are 

investigated and finally the optimum stacking 

sequence that maximizes the objective function is 

obtained.  

In this study, to increase the accuracy of 

approximation, the modified response surface [23] is 

used as a response surface. In this modified response 

surface, the adjacent stacking-sequences around the 

optimal stacking-sequence obtained using fractal 

branch-and-bound method once is added into the 

experimental set of the response surface. And the 

fractal branch-and-bound method is performed using 

this modified response surface again. The adjacent 

stacking-sequences in in-plane and out-of-plane 

spaces are obtained, as is the similar case with 

symmetrical laminates [24]. The adjacent stacking-

sequence of coupling lamination parameters is 

obtained by exchanging the each layer that exists on 

symmetrical geometry against mid-plane from Eqs. 

(1), (3) and (5). For example, when the stacking 

sequence is [90/45/45/0/0/45/0/45], the adjacent 

stacking sequence to be added is as follows: 

(i) 1st layer ⇔ 8th layer: 
[45/45/45/0/0/45/0/90] 

(ii) 2nd layer ⇔  7th layer: 
[90/0/45/0/0/45/45/45] 

(iii) 1st layer ⇔  8th layer, 
2nd layer ⇔  7th layer: 

[45/0/45/0/0/45/45/90] 

These adjacent laminates have the same in-plan 

and out-of-plane lamination parameters and different 

coupling lamination parameters compared with those 

of the original laminates. The number of added 

stacking sequence, na, is as follows at most when the 

total number of plies is N. 

( )





−

−
=

− odd is    when 12

even is    when 12

21

2

N

N
n

N

N

a
                  (50) 

3. Application of the proposed method 

3.1 Optimization Problem 

The proposed improved fractal branch-and-

bound method is applied to stacking sequence 

optimization of asymmetrical laminates for a 

buckling load maximization of cylindrical shells 

subjected to axial compression, external lateral 

pressure, and torsion [12, 22, 25]. The governing 

equation of composite cylindrical shell buckling 

based on Flügge’s theory is expressed in terms of 

displacement at middle surface of the shells and in-

plane stiffness matrix [A], coupling stiffness matrix 

[B], and out-of-plane stiffness [D] (See Ref. [25]). 

Nx, Nφ and Nxφ are the external axial compression per 

unit length, external lateral pressure (p = Nφ
 
/ R), and 

torsional force per unit length. 

The initial loads is expressed using loads N
0
 as 

follows: 
00 NqN xx = , 00 NqN φφ = , 00 NqN xx φφ =          (51) 

where qx, qxφ, and qφ is the prescribed coefficient of 

axial compressive load, lateral pressure, and 

torsional load. When qx, qxφ and qφ are given, a 
buckling load Ncr is obtained. 

In the analysis, the material properties are used 

from a carbon/epoxy composite: E11/E22 = 20, 

G12/E22 = 0.6, ν12 = 0.25. The total number of 

laminates is 12, and the fiber angles are limited to 0º, 

±45º, 90º. In the cylindrical shells, the L/R = 120, 

L

R

h

Positive torque

Positive fiber angle

X

Y

Z

x,u

y or φ,v
z,w

θ
p=Nφ/R

Nxφ

Nx

L/2

 
Fig. 8. Geometry of the laminated composite 

cylindrical shell. 
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R/h = 20 as shown in Fig. 8. The objective function 

is the normalized buckling loads as follows [22]: 
3

22 10×= hENN cr
                     (52) 

The normalized loads of axial compression, 

lateral pressure, and torsion are expressed as 

follows: 

NqN xx = , NqN φφ = , NqN xx φφ =       (53) 

 

3.2 Results and discussion 

D-optimal DOE is used to select the 110 best 

laminates set from all 4
12
 = 16777216 laminates. 

Using this set of the laminates, the response surface 

of quadratic polynomial function is created in terms 

of in-plan, out-of-plane, and coupling lamination 

parameters, V
A, B, D

1, 2, 3. The adjusted coefficient of 

multiple determination Radj
2
 of the response surface 

is 0.972: which shows the approximation is enough 

accurate. Let us consider the condition that the 

cylinder is subjected to the torsional load: qx = qφ = 0, 

and qxφ  = 1. Using the response surface and 
proposed fractal branch-and-bound method, the 

obtained optimal stacking-sequence is [903/04/-

453/902], and the buckling load parameter is 37.67. 

The true optimal stacking sequence obtained by 

searching around the lamination parameters of 

[903/04/-453/902] is [903/05/-452/902], and the 

buckling load parameter is 38.55. The relative error 

between the optimal value obtained using the fractal 

branch-and-bound method and the true value is 

2.28 %. This value is small enough, and the obtained 

optimal laminate is practically acceptable. 

Table 1 shows the stacking sequence 

optimization results with varying the ratio of axial 

compression, external lateral pressure and torsional 

force. In Table 1, qx, qφ and qxφ show the ratio of 
external compressive load, external lateral pressure 

and torsional load, respectively. The relative error 

between optimal laminates obtained using proposed 

fractal branch-and-bound method and true optimal 

value is less than 2.28 %. This confirms that 

practical optimal stacking-sequence is obtained. The 

computational order is O (1.59
N
) in the fractal 

branch-and-bound method and O (4
N
) in Round 

Robin search as shown in Fig. 9. 

 

4. Concluding Remarks 

For stacking-sequence optimization of 

asymmetrical laminates, we proposed the improved 

fractal branch-and-bound method. The stiffness of 

asymmetrical laminates is expressed in terms of in-

plane, out-of-plane, and coupling lamination 

parameters. We clarify the feasible regions of the 

lamination parameters: the in-plane and out-of-plane 

lamination parameters create the fractal pattern of 

self-similar tetrahedrons, and the coupling 

lamination parameters create that of self-similar 

tetradecahedrons. The proposed method performs a 

branch-and-bound using the fractal pattern of 

lamination parameters, and effectively obtains an 

optimal stacking-sequence. To demonstrate the 

applicability of the method, we applied this method 

to the buckling-load maximization problems of 

cylinder shells subjected to axial compressive load, 

external lateral pressure and torsional load. As a 

result, the method is successfully applied, and the 

practical optimal stacking-sequence is obtained with 

low computational cost. 
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